• Tidak ada hasil yang ditemukan

Chapter 3. Investigation of supercapacitor effect of SWBs

3.3 Conclusion

30

31

4. Summary

Owing to various ecological problems (e.g. average temperature increasing and unexpected downpour) caused by fossil fuel resource (i.e. petroleum and gas), the eco-friendly energy sources such as wind and solar power are being studied by many researchers. Accordingly, the development of effective and highly efficient energy storage systems (ESSs) are being considered due to its unstable energy production and supplement. Because it can utilize the huge and reasonable ESSs, the seawater batteries (SWBs) which use the naturally abundant and eco-friendly material are promising ESS.

However, the sluggish kinetics of OER/ORR can deteriorate the energy efficiency due to induced overpotential.

To solve this problem, we proposed the slurry cathode which has a large surface area to improve the reaction kinetics using activated carbon powder (ACP) produced by ball-milling of activated carbon cloth (ACC) and platinum on carbon as ORR catalyst. The high surface area electrode can stabilize the voltage profiles and improve energy efficiency due to the capacitance effect related to EDL formation.

To fabricate the slurry cathode, the binder which can bond the materials must be used. However, the hydrophobic binder (i.e. PvdF) can cause the contact issue between seawater and cathode current collector. Therefore, all of the battery performances can be deteriorated due to poor wettability.

We developed the polymeric binder (DPA642) using 3,4-dihydroxyphenylalanine (DOPA), which has underwater wetting and adhesion properties, and poly(ethylene glycol) (PEG) through thermal copolymerization and produced the slurry cathode current collector using this polymer. Finally, we investigated the ACP-DPA642 performance compared to ACC and ACP-PvdF through the galvanostatic charge-discharge test at 0.2 mA (0.13 mA cm-2) for 1000 h (1 cycle = 10h).

The electrochemical results of ACP-DPA642 showed a lower voltage gap (0.51 V) and enhanced energy efficiency (94.9 %) compared to those of ACC (0.90 V, 86.8%) and ACP-PvdF (0.89 V, 88.1%, respectively). Also, ACP-DPA642 has the best cycle retention by the antioxidant effect of DOPA which prevents the oxidative degradation of carbon electrodes.

To investigate the secondary batteries performances, we used the metal-free SWBs using hard carbon anode at 0.2 mA (0.13 mA cm-2) with a capacity control of 200 mAh g-1 and discharge voltage limitation of 0.5 V. The metal-free ACP-DPA642 shows the higher average discharge voltage and energy efficiency (2.68 V, 74.1%) than ACC (2.52 V, 67.7%) and ACP-PvdF (2.46 V, 43.8%) at second cycle, respectively. We can confirm that the ACP-DPA642 has the best electrochemical properties.

32

Also, we measured the specific capacitance of each carbon electrode through cyclic voltammetry and galvanostatic charge-discharge test. As a result, the specific capacitance of ACC-DPA642 (~ 822 F g-1) was larger than ACC (~ 728 F g-1) and ACP-PvdF (~ 516 F g-1) at cyclic voltammetry and galvanostatic charge-discharge test, respectively, despite the large specific surface area of ACC (~ 1787 m2 g-1) (ACP- DPA642 (~ 1697 m2 g-1) and ACP-PvdF (~ 627.27 m2 g-1), respectively). It seems that the redox-active property of DOPA can induce the pseudocapacitor effect which offers the charge through the fast-redox reactions.

We are convinced that this research can accelerate the progress of an eco-friendly green grid and long-life and high-performance ESS for green energy sources.

33

References

(1) Larcher, D.; Tarascon, J. M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7 (1), 19–29. https://doi.org/10.1038/nchem.2085.

(2) Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science (80-. ). 2011, 334 (6058), 928–935. https://doi.org/10.1126/science.1212741.

(3) Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in Electrical Energy Storage System: A Critical Review. Prog. Nat. Sci. 2009, 19 (3), 291–312.

https://doi.org/10.1016/j.pnsc.2008.07.014.

(4) Rahman, F.; Rehman, S.; Abdul-Majeed, M. A. Overview of Energy Storage Systems for Storing Electricity from Renewable Energy Sources in Saudi Arabia. Renew. Sustain. Energy Rev. 2012, 16 (1), 274–283. https://doi.org/10.1016/j.rser.2011.07.153.

(5) Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on Recent Developments in Energy Storage: Mechanical, Electrochemical and Hydrogen Technologies. Energy Convers.

Manag. 2017, 132, 372–387. https://doi.org/10.1016/j.enconman.2016.11.046.

(6) Rahman, M. A.; Wang, X.; Wen, C. High Energy Density Metal-Air Batteries: A Review. J.

Electrochem. Soc. 2013, 160 (10), A1759–A1771. https://doi.org/10.1149/2.062310jes.

(7) Sahgong, S. H.; Senthilkumar, S. T.; Kim, K.; Hwang, S. M.; Kim, Y. Rechargeable Aqueous Na-Air Batteries: Highly Improved Voltage Efficiency by Use of Catalysts. Electrochem.

commun. 2015, 61 (May 2018), 53–56. https://doi.org/10.1016/j.elecom.2015.10.004.

(8) Das, S. K.; Lau, S.; Archer, L. A. Sodium-Oxygen Batteries: A New Class of Metal-Air Batteries. J. Mater. Chem. A 2014, 2 (32), 12623–12629. https://doi.org/10.1039/c4ta02176b.

(9) Kim, Y.; Kim, H.; Park, S.; Seo, I.; Kim, Y. Na Ion- Conducting Ceramic as Solid Electrolyte for Rechargeable Seawater Batteries. Electrochim. Acta 2016, 191, 1–7.

https://doi.org/10.1016/j.electacta.2016.01.054.

(10) Kim, J. K.; Lee, E.; Kim, H.; Johnson, C.; Cho, J.; Kim, Y. Rechargeable Seawater Battery and Its Electrochemical Mechanism. ChemElectroChem 2015, 2 (3), 328–332.

https://doi.org/10.1002/celc.201402344.

34

(11) Kim, H.; Park, J. S.; Sahgong, S. H.; Park, S.; Kim, J. K.; Kim, Y. Metal-Free Hybrid Seawater Fuel Cell with an Ether-Based Electrolyte. J. Mater. Chem. A 2014, 2 (46), 19584–

19588. https://doi.org/10.1039/c4ta04937c.

(12) Abirami, M.; Hwang, S. M.; Yang, J.; Senthilkumar, S. T.; Kim, J.; Go, W. S.; Senthilkumar, B.; Song, H. K.; Kim, Y. A Metal-Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na-Air/Seawater Batteries. ACS Appl. Mater.

Interfaces 2016, 8 (48), 32778–32787. https://doi.org/10.1021/acsami.6b10082.

(13) Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review.

Nano Energy 2017, 37 (February), 136–157. https://doi.org/10.1016/j.nanoen.2017.05.022.

(14) Qian, Y.; Hu, Z.; Ge, X.; Yang, S.; Peng, Y.; Kang, Z.; Liu, Z.; Lee, J. Y.; Zhao, D. A Metal- Free ORR/OER Bifunctional Electrocatalyst Derived from Metal-Organic Frameworks for Rechargeable Zn-Air Batteries. Carbon N. Y. 2017, 111, 641–650.

https://doi.org/10.1016/j.carbon.2016.10.046.

(15) Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Nat. Nanotechnol. 2015, 10 (5), 444–452.

https://doi.org/10.1038/nnano.2015.48.

(16) Katsounaros, I.; Schneider, W. B.; Meier, J. C.; Benedikt, U.; Biedermann, P. U.; Auer, A. A.;

Mayrhofer, K. J. J. Hydrogen Peroxide Electrochemistry on Platinum: Towards Understanding the Oxygen Reduction Reaction Mechanism. Phys. Chem. Chem. Phys. 2012, 14 (20), 7384–

7391. https://doi.org/10.1039/c2cp40616k.

(17) Suh, D. H.; Park, S. K.; Nakhanivej, P.; Kim, Y.; Hwang, S. M.; Park, H. S. Hierarchically Structured Graphene-Carbon Nanotube-Cobalt Hybrid Electrocatalyst for Seawater Battery. J.

Power Sources 2017, 372 (August), 31–37. https://doi.org/10.1016/j.jpowsour.2017.10.056.

(18) Khan, Z.; Senthilkumar, B.; Park, S. O.; Park, S.; Yang, J.; Lee, J. H.; Song, H. K.; Kim, Y.;

Kwak, S. K.; Ko, H. Carambola-Shaped VO2 Nanostructures: A Binder-Free Air Electrode for an Aqueous Na-Air Battery. J. Mater. Chem. A 2017, 5 (5), 2037–2044.

https://doi.org/10.1039/c6ta09375b.

(19) Zakowski, K.; Narozny, M.; Szocinski, M.; Darowicki, K. Influence of Water Salinity on Corrosion Risk - The Case of the Southern Baltic Sea Coast. Environ. Monit. Assess. 2014, 186 (8), 4871–4879. https://doi.org/10.1007/s10661-014-3744-3.

35

(20) FINK, F. W. Corrosion of Metals in Sea Water. 1960, 27–39. https://doi.org/10.1021/ba-1960- 0027.ch005.

(21) Zhang, Y.; Park, J. S.; Senthilkumar, S. T.; Kim, Y. A Novel Rechargeable Hybrid Na-

Seawater Flow Battery Using Bifunctional Electrocatalytic Carbon Sponge as Cathode Current Collector. J. Power Sources 2018, 400 (August), 478–484.

https://doi.org/10.1016/j.jpowsour.2018.08.044.

(22) Zhang, L.; Zhao, X. S. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev.

2009, 38 (9), 2520–2531. https://doi.org/10.1039/b813846j.

(23) Miller, J. R.; Simon, P. Electrochemical Capacitors For. Science (80-. ). 2008, 321 (August), 651–652. https://doi.org/10.1126/science.1158736.

(24) Burk, A. Ultracapacitors: Why, How, and Where Is the Technology. J. Power Sources 2000, 91 (1), 37–50.

(25) Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev.

2004, 104 (10), 4245–4269. https://doi.org/10.1021/cr020730k.

(26) Park, J.; Park, J. S.; Senthilkumar, S. T.; Kim, Y. Hybridization of Cathode Electrochemistry in a Rechargeable Seawater Battery: Toward Performance Enhancement. J. Power Sources 2020, 450 (August 2019), 227600. https://doi.org/10.1016/j.jpowsour.2019.227600.

(27) Zhu, H.; Wang, C.; Li, C.; Guan, L.; Pan, H.; Yan, M.; Jiang, Y. Engineering Capacitive Contribution in Nitrogen-Doped Carbon Nanofiber Films Enabling High Performance Sodium Storage. Carbon N. Y. 2018, 130, 145–152. https://doi.org/10.1016/j.carbon.2017.12.126.

(28) Lu, P.; Sun, Y.; Xiang, H.; Liang, X.; Yu, Y. 3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries. Adv.

Energy Mater. 2018, 8 (8), 1–8. https://doi.org/10.1002/aenm.201702434.

(29) Li, S.; Qiu, J.; Lai, C.; Ling, M.; Zhao, H.; Zhang, S. Surface Capacitive Contributions:

Towards High Rate Anode Materials for Sodium Ion Batteries. Nano Energy 2015, 12, 224–

230. https://doi.org/10.1016/j.nanoen.2014.12.032.

(30) Zhao, K.; Liu, F.; Niu, C.; Xu, W.; Dong, Y.; Zhang, L.; Xie, S.; Yan, M.; Wei, Q.; Zhao, D.;

Mai, L. Graphene Oxide Wrapped Amorphous Copper Vanadium Oxide with Enhanced Capacitive Behavior for High-Rate and Long-Life Lithium-Ion Battery Anodes. Adv. Sci.

2015, 2 (12), 1–7. https://doi.org/10.1002/advs.201500154.

36

(31) Yamada, H.; Kodama, K.; Kato, H. Cell Performance and Durability of Pt/C Cathode Catalyst Covered by Dopamine Derived Carbon Thin Layer for Polymer Electrolyte Fuel Cells. J.

Electrochem. Soc. 2020. https://doi.org/10.1149/1945-7111/ab8b97.

(32) Han, J.; Hwang, S. M.; Go, W.; Senthilkumar, S. T.; Jeon, D.; Kim, Y. Development of Coin- Type Cell and Engineering of Its Compartments for Rechargeable Seawater Batteries. J.

Power Sources 2018, 374 (October 2017), 24–30.

https://doi.org/10.1016/j.jpowsour.2017.11.022.

(33) Aslan, M.; Weingarth, D.; Jäckel, N.; Atchison, J. S.; Grobelsek, I.; Presser, V.

Polyvinylpyrrolidone as Binder for Castable Supercapacitor Electrodes with High

Electrochemical Performance in Organic Electrolytes. J. Power Sources 2014, 266, 374–383.

https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.05.031.

(34) Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

Polyvinylpyrrolidone/Polyvinyl Butyral Composite as a Stable Binder for Castable

Supercapacitor Electrodes in Aqueous Electrolytes. J. Power Sources 2015, 279, 323–333.

https://doi.org/10.1016/j.jpowsour.2014.12.151.

(35) Harrington, M. J.; Jehle, F.; Priemel, T. Mussel Byssus Structure-Function and Fabrication as Inspiration for Biotechnological Production of Advanced Materials. Biotechnol. J. 2018, 13 (12), 1–11. https://doi.org/10.1002/biot.201800133.

(36) Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-Inspired Adhesives and Coatings. Annu. Rev. Mater. Res. 2011, 41, 99–132. https://doi.org/10.1146/annurev-matsci- 062910-100429.

(37) Waite, J. H. Mussel Adhesion - Essential Footwork. J. Exp. Biol. 2017, 220 (4), 517–530.

https://doi.org/10.1242/jeb.134056.

(38) Zhu, L.; Lu, Y.; Wang, Y.; Zhang, L.; Wang, W. Preparation and Characterization of

Dopamine-Decorated Hydrophilic Carbon Black. Appl. Surf. Sci. 2012, 258 (14), 5387–5393.

https://doi.org/10.1016/j.apsusc.2012.02.016.

(39) Yang, M.; Wu, J.; Fang, D.; Li, B.; Yang, Y. Corrosion Protection of Waterborne Epoxy Coatings Containing Mussel-Inspired Adhesive Polymers Based on Polyaspartamide Derivatives on Carbon Steel. J. Mater. Sci. Technol. 2018, 34 (12), 2464–2471.

https://doi.org/10.1016/j.jmst.2018.05.009.

37

(40) Puertas-Bartolomé, M.; Benito-Garzón, L.; Fung, S.; Kohn, J.; Vázquez-Lasa, B.; San Román, J. Bioadhesive Functional Hydrogels: Controlled Release of Catechol Species with

Antioxidant and Antiinflammatory Behavior. Mater. Sci. Eng. C 2019, 105 (June), 110040.

https://doi.org/10.1016/j.msec.2019.110040.

(41) Lee, W.; Park, J.; Park, J.; Kang, S. J.; Choi, Y.; Kim, Y. Identifying the Mechanism and Impact of Parasitic Reactions Occurring in Carbonaceous Seawater Battery Cathodes. J.

Mater. Chem. A 2020, 8 (18), 9185–9193. https://doi.org/10.1039/d0ta02913k.

(42) Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nanocrevasse-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes. Nano Lett. 2019, 19 (3), 1504–

1511. https://doi.org/10.1021/acs.nanolett.8b04106.

(43) Bae, H.; Park, J. S.; Senthilkumar, S. T.; Hwang, S. M.; Kim, Y. Hybrid Seawater

Desalination-Carbon Capture Using Modified Seawater Battery System. J. Power Sources 2019, 410411 (October 2018), 99–105. https://doi.org/10.1016/j.jpowsour.2018.11.009.

(44) Sahgong, S. H.; Senthilkumar, S. T.; Kim, K.; Hwang, S. M.; Kim, Y. Rechargeable Aqueous Na-Air Batteries: Highly Improved Voltage Efficiency by Use of Catalysts. Electrochem.

commun. 2015, 61, 53–56. https://doi.org/10.1016/j.elecom.2015.10.004.

(45) Hofman, A. H.; van Hees, I. A.; Yang, J.; Kamperman, M. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Adv. Mater. 2018, 30 (19).

https://doi.org/10.1002/adma.201704640.

(46) Magistris, A.; Fisica, C. PEO-Based Polymer Electrolytes. 1992, 28 (March 1990), 277–280.

(47) Xue, Z.; He, D.; Xie, X. Poly(Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries. J.

Mater. Chem. A 2015, 3 (38), 19218–19253. https://doi.org/10.1039/c5ta03471j.

(48) Jeon, D. H. Wettability in Electrodes and Its Impact on the Performance of Lithium-Ion Batteries. Energy Storage Mater. 2019, 18 (October 2018), 139–147.

https://doi.org/10.1016/j.ensm.2019.01.002.

(49) Wang, W. H.; Wang, X. D. Investigation of Ir-Modified Carbon Felt as the Positive Electrode of an All-Vanadium Redox Flow Battery. Electrochim. Acta 2007, 52 (24), 6755–6762.

https://doi.org/10.1016/j.electacta.2007.04.121.

(50) Welham, N. J.; Berbenni, V.; Chapman, P. G. Effect of Extended Ball Milling on Graphite. J.

Alloys Compd. 2003, 349 (1–2), 255–263. https://doi.org/10.1016/S0925-8388(02)00880-0.

38

(51) Zhao, J.; Yang, X.; Yao, Y.; Gao, Y.; Sui, Y.; Zou, B.; Ehrenberg, H.; Chen, G.; Du, F.

Moving to Aqueous Binder: A Valid Approach to Achieving High-Rate Capability and Long- Term Durability for Sodium-Ion Battery. Adv. Sci. 2018, 5 (4).

https://doi.org/10.1002/advs.201700768.

(52) Chou, S. L.; Pan, Y.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Small Things Make a Big Difference:

Binder Effects on the Performance of Li and Na Batteries. Phys. Chem. Chem. Phys. 2014, 16 (38), 20347–20359. https://doi.org/10.1039/c4cp02475c.

(53) Payra, D.; Naito, M.; Fujii, Y.; Yamada, N. L.; Hiromoto, S.; Singh, A. Bioinspired Adhesive Polymer Coatings for Efficient and Versatile Corrosion Resistance. RSC Adv. 2015, 5 (21), 15977–15984. https://doi.org/10.1039/c4ra17196a.

(54) Zhang, F.; Sababi, M.; Brinck, T.; Persson, D.; Pan, J.; Claesson, P. M. In Situ Investigations of Fe3+ Induced Complexation of Adsorbed Mefp-1 Protein Film on Iron Substrate. J. Colloid Interface Sci. 2013, 404, 62–71. https://doi.org/10.1016/j.jcis.2013.05.016.

(55) Puertas-Bartolomé, M.; Fernández-Gutiérrez, M.; García-Fernández, L.; Vázquez-Lasa, B.;

San Román, J. Biocompatible and Bioadhesive Low Molecular Weight Polymers Containing Long-Arm Catechol-Functionalized Methacrylate. Eur. Polym. J. 2018, 98 (November 2017), 47–55. https://doi.org/10.1016/j.eurpolymj.2017.11.011.

(56) Gotoh, K.; Ishikawa, T.; Shimadzu, S.; Yabuuchi, N.; Komaba, S.; Takeda, K.; Goto, A.;

Deguchi, K.; Ohki, S.; Hashi, K.; Shimizu, T.; Ishida, H. NMR Study for Electrochemically Inserted Na in Hard Carbon Electrode of Sodium Ion Battery. J. Power Sources 2013, 225, 137–140. https://doi.org/10.1016/j.jpowsour.2012.10.025.

(57) Hong, K. L.; Qie, L.; Zeng, R.; Yi, Z. Q.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q. J.;

Zhang, W. X.; Huang, Y. H. Biomass Derived Hard Carbon Used as a High Performance Anode Material for Sodium Ion Batteries. J. Mater. Chem. A 2014, 2 (32), 12733–12738.

https://doi.org/10.1039/c4ta02068e.

(58) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.;

Gotoh, K.; Fujiwara, K. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Adv. Funct. Mater. 2011, 21 (20), 3859–3867. https://doi.org/10.1002/adfm.201100854.

39

(59) Jeon, D. H. Wettability in Electrodes and Its Impact on the Performance of Lithium-Ion Batteries. Energy Storage Mater. 2019, 18 (December 2018), 139–147.

https://doi.org/10.1016/j.ensm.2019.01.002.

(60) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–

10), 1051–1069. https://doi.org/10.1515/pac-2014-1117.

(61) Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface Area and Pore Texture of Catalysts. Catal. Today 1998, 41 (1–3), 207–219. https://doi.org/10.1016/S0920-

5861(98)00050-9.

(62) Bacil, R. P.; Chen, L.; Serrano, S. H. P.; Compton, R. G. Dopamine Oxidation at Gold

Electrodes: Mechanism and Kinetics near Neutral PH. Phys. Chem. Chem. Phys. 2020, 22 (2), 607–614. https://doi.org/10.1039/c9cp05527d.

Dokumen terkait