• Tidak ada hasil yang ditemukan

Conclusion

Dalam dokumen Ran Lee (Halaman 64-90)

52

53

demonstrates a good agreement by comparing the result of McCARD, and MCS. Therefore, STREAM3D is proven to be able to accurately analyze the APR1400 reactor core.

54

Appendix

Table 22. Reactivity error and RMS error of pin power compared to McCARD for A0 assembly

A0 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02A0V01 1.23419 5 1.23211 -137 0.19

APR02A0V02 1.20266 5 1.20088 -123 0.07

APR02A0V03 1.19363 5 1.19126 -167 0.05

APR02A0V04 0.98255 6 0.98098 -163 0.14

APR02A0V05 1.02908 5 1.02752 -148 0.05

APR02A0V06 1.02117 6 1.01936 -174 0.05

APR02A0V07 0.82269 6 0.82151 -175 0.12

APR02A0V08 0.90365 6 0.90227 -169 0.06

APR02A0V09 0.89668 6 0.89512 -194 0.05

Table 23. Reactivity error and RMS error of pin power compared to McCARD for B0 assembly

B0 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B0V01 1.41388 5 1.41203 -93 0.21

APR02B0V02 1.36053 5 1.3588 -94 0.06

APR02B0V03 1.35029 6 1.34841 -103 0.06

APR02B0V04 1.20097 6 1.19947 -104 0.17

APR02B0V05 1.22370 6 1.22207 -109 0.07

APR02B0V06 1.21468 6 1.21275 -131 0.08

APR02B0V07 1.05016 6 1.04874 -129 0.16

APR02B0V08 1.11505 6 1.11357 -119 0.07

APR02B0V09 1.10678 6 1.10512 -136 0.06

55

Table 24. Reactivity error and RMS error of pin power compared to McCARD for B1 assembly

B1 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B1V01 1.22686 6 1.22478 -138 0.34

APR02B1V02 1.14201 6 1.1432 91 0.12

APR02B1V03 1.13328 7 1.13414 67 0.11

APR02B1V04 1.05294 6 1.05137 -142 0.29

APR02B1V05 1.04049 7 1.04106 53 0.12

APR02B1V06 1.03245 6 1.03289 41 0.10

APR02B1V07 0.92809 7 0.92667 -165 0.28

APR02B1V08 0.95801 6 0.95835 37 0.10

APR02B1V09 0.95072 6 0.95092 22 0.10

Table 25. Reactivity error and RMS error of pin power compared to McCARD for B2 assembly

B2 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B2V01 1.21635 6 1.21415 -149 0.33

APR02B2V02 1.13136 6 1.13143 5 0.11

APR02B2V03 1.12265 7 1.12355 71 0.11

APR02B2V04 1.04071 7 1.03851 -204 0.29

APR02B2V05 1.02888 6 1.0294 49 0.10

APR02B2V06 1.02095 6 1.0213 34 0.09

APR02B2V07 0.91529 6 0.91394 -161 0.27

APR02B2V08 0.94584 6 0.94616 36 0.10

APR02B2V09 0.93857 6 0.9388 26 0.11

56

Table 26. Reactivity error and RMS error of pin power compared to McCARD for B3 assembly

B3 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B3V01 1.17476 6 1.17269 -150 0.35

APR02B3V02 1.08259 7 1.08471 181 0.10

APR02B3V03 1.07417 7 1.07604 162 0.10

APR02B3V04 1.01213 7 1.00969 -239 0.30

APR02B3V05 0.99066 7 0.99199 135 0.10

APR02B3V06 0.98306 6 0.98417 115 0.11

APR02B3V07 0.89455 6 0.8934 -144 0.28

APR02B3V08 0.91549 6 0.9164 108 0.09

APR02B3V09 0.90850 6 0.90927 93 0.08

Table 27. Reactivity error and RMS error of pin power compared to McCARD for C0 assembly

C0 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C0V00 1.44026 5 1.43845 -87 0.26

APR02C0V01 1.38404 6 1.38225 -94 0.07

APR02C0V02 1.37366 6 1.37175 -101 0.07

APR02C0V03 1.23616 6 1.23474 -93 0.02

APR02C0V04 1.25472 6 1.25301 -109 0.07

APR02C0V05 1.24543 6 1.24353 -123 0.07

APR02C0V06 1.08915 7 1.08791 -105 0.17

APR02C0V07 1.15067 7 1.14897 -129 0.07

APR02C0V08 1.14211 7 1.14034 -136 0.08

57

Table 28. Reactivity error and RMS error of pin power compared to McCARD for C1 assembly

C1 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C1V01 1.27188 6 1.26985 -126 0.34

APR02C1V02 1.18695 7 1.18794 70 0.11

APR02C1V03 1.17790 6 1.17866 55 0.11

APR02C1V04 1.10469 6 1.10315 -126 0.30

APR02C1V05 1.08996 7 1.09118 103 0.13

APR02C1V06 1.08172 7 1.08203 26 0.10

APR02C1V07 0.98209 7 0.98078 -136 0.27

APR02C1V08 1.01005 6 1.01028 23 0.11

APR02C1V09 1.00242 6 1.00257 15 0.13

Table 29.Reactivity error and RMS error of pin power compared to McCARD for C2 assembly

C2 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C2V01 1.22195 6 1.21994 -135 0.36

APR02C2V02 1.13040 7 1.13235 152 0.08

APR02C2V03 1.12173 7 1.12345 136 0.11

APR02C2V04 1.06450 7 1.06310 -124 0.31

APR02C2V05 1.04174 7 1.04302 118 0.09

APR02C2V06 1.03370 7 1.03492 114 0.08

APR02C2V07 0.94879 7 0.94754 -139 0.29

APR02C2V08 0.96832 6 0.96914 87 0.10

APR02C2V09 0.96111 7 0.96172 66 0.09

58

Table 30. Reactivity error and RMS error of pin power compared to McCARD for C3 assembly

C3 assembly

McCARD STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C3V01 1.21323 6 1.21126 -134 0.36

APR02C3V02 1.12148 7 1.12349 160 0.09

APR02C3V03 1.11286 7 1.11462 142 0.10

APR02C3V04 1.05433 7 1.05295 -124 0.30

APR02C3V05 1.03205 6 1.03326 113 0.08

APR02C3V06 1.02413 7 1.02521 103 0.09

APR02C3V07 0.93802 6 0.93678 -141 0.27

APR02C3V08 0.95788 7 0.95886 107 0.09

APR02C3V09 0.95072 7 0.95143 78 0.09

Table 31. Reactivity error and RMS error of pin power compared to MCS for A0 assembly

A0 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02A0V01 1.23316 6 1.23211 -69 0.23

APR02A0V02 1.20209 7 1.20088 -84 0.09

APR02A0V03 1.19277 6 1.19126 -106 0.11

APR02A0V04 0.98130 6 0.98098 -34 0.20

APR02A0V05 1.02848 6 1.02752 -91 0.12

APR02A0V06 1.02044 6 1.01936 -104 0.13

APR02A0V07 0.82172 6 0.82151 -31 0.21

APR02A0V08 0.90299 6 0.90227 -88 0.14

APR02A0V09 0.89598 6 0.89512 -107 0.11

59

Table 32. Reactivity error and RMS error of pin power compared to MCS for B0 assembly

B0 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B0V01 1.41303 7 1.41203 -50 0.26

APR02B0V02 1.35989 8 1.35880 -59 0.12

APR02B0V03 1.34984 8 1.34841 -79 0.11

APR02B0V04 1.19957 7 1.19947 -7 0.24

APR02B0V05 1.22302 7 1.22207 -64 0.14

APR02B0V06 1.21395 7 1.21275 -82 0.14

APR02B0V07 1.04842 7 1.04874 29 0.20

APR02B0V08 1.11420 7 1.11357 -51 0.12

APR02B0V09 1.10605 7 1.10512 -76 0.15

Table 33. Reactivity error and RMS error of pin power compared to MCS for B1 assembly

B1 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B1V01 1.22671 7 1.22478 -128 0.53

APR02B1V02 1.14224 7 1.1432 74 0.19

APR02B1V03 1.13315 8 1.13414 77 0.21

APR02B1V04 1.05225 7 1.05137 -80 0.44

APR02B1V05 1.04033 7 1.04106 67 0.28

APR02B1V06 1.03236 7 1.03289 50 0.25

APR02B1V07 0.92689 6 0.92667 -25 0.43

APR02B1V08 0.95786 7 0.95835 53 0.32

APR02B1V09 0.95062 6 0.95092 34 0.31

60

Table 34. Reactivity error and RMS error of pin power compared to MCS for B2 assembly

B2 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B2V01 1.21615 7 1.21415 -135 0.48

APR02B2V02 1.13149 7 1.13143 -5 0.19

APR02B2V03 1.12269 7 1.12355 68 0.24

APR02B2V04 1.03989 7 1.03851 -128 0.46

APR02B2V05 1.02863 7 1.02940 73 0.23

APR02B2V06 1.02074 7 1.02130 54 0.23

APR02B2V07 0.91432 7 0.91394 -45 0.42

APR02B2V08 0.94558 7 0.94616 65 0.30

APR02B2V09 0.93852 6 0.93880 32 0.29

Table 35. Reactivity error and RMS error of pin power compared to MCS for B3 assembly

B3 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02B3V01 1.17481 7 1.17269 -154 0.62

APR02B3V02 1.08288 7 1.08471 156 0.22

APR02B3V03 1.07457 7 1.07604 127 0.24

APR02B3V04 1.01152 7 1.00969 -179 0.42

APR02B3V05 0.99073 6 0.99199 129 0.24

APR02B3V06 0.98313 7 0.98417 108 0.24

APR02B3V07 0.89385 6 0.89340 -56 0.44

APR02B3V08 0.91530 7 0.91640 132 0.26

APR02B3V09 0.90841 7 0.90927 105 0.25

61

Table 36. Reactivity error and RMS error of pin power compared to MCS for C0 assembly

C0 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C0V00 1.43910 7 1.43845 -31 0.28

APR02C0V01 1.38344 7 1.38225 -62 0.12

APR02C0V02 1.37308 8 1.37175 -71 0.16

APR02C0V03 1.23465 7 1.23474 6 0.26

APR02C0V04 1.25409 7 1.25301 -69 0.10

APR02C0V05 1.24463 7 1.24353 -71 0.12

APR02C0V06 1.08757 7 1.08791 29 0.25

APR02C0V07 1.14969 7 1.14897 -55 0.17

APR02C0V08 1.14137 8 1.14034 -79 0.14

Table 37. Reactivity error and RMS error of pin power compared to MCS for C1 assembly

C1 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C1V01 1.27145 7 1.26985 -99 0.52

APR02C1V02 1.18698 7 1.18794 68 0.24

APR02C1V03 1.17776 7 1.17866 65 0.26

APR02C1V04 1.10387 7 1.10315 -59 0.48

APR02C1V05 1.08986 7 1.09118 111 0.24

APR02C1V06 1.08153 7 1.08203 43 0.30

APR02C1V07 0.98107 7 0.98078 -30 0.42

APR02C1V08 1.00972 7 1.01028 55 0.28

APR02C1V09 1.00229 7 1.00257 28 0.24

62

Table 38. Reactivity error and RMS error of pin power compared to MCS for C2 assembly

C2 assembly

MCS STREAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C2V01 1.22158 7 1.21994 -110 0.52

APR02C2V02 1.13052 7 1.13235 143 0.29

APR02C2V03 1.12176 7 1.12345 134 0.29

APR02C2V04 1.06382 7 1.06310 -64 0.46

APR02C2V05 1.04176 7 1.04302 116 0.25

APR02C2V06 1.03379 7 1.03492 106 0.27

APR02C2V07 0.94774 7 0.94754 -22 0.41

APR02C2V08 0.96805 7 0.96914 117 0.31

APR02C2V09 0.96077 7 0.96172 102 0.30

Table 39. Reactivity error and RMS error of pin power compared to MCS for C3 assembly

C3 assembly

MCS STRAM3D

Reactivity Error [pcm]

RMS error of pin power

[%]

k-inf std.[pcm] k-inf

APR02C3V01 1.21309 7 1.21126 -125 0.53

APR02C3V02 1.12173 7 1.12349 140 0.25

APR02C3V03 1.11311 7 1.11462 122 0.23

APR02C3V04 1.05376 7 1.05295 -73 0.49

APR02C3V05 1.03201 7 1.03326 117 0.25

APR02C3V06 1.02407 7 1.02521 109 0.20

APR02C3V07 0.93723 7 0.93678 -52 0.42

APR02C3V08 0.95789 7 0.95886 105 0.28

APR02C3V09 0.95063 7 0.95143 89 0.32

63

Figure 21. Radial power distribution and relative error for APR03V04

64

Figure 22. Radial power distribution and relative error for APR03V05

65

Figure 23. Radial power distribution and relative error for APR03V07

66

Figure 24. Radial power distribution and relative error for APR03V08

67

Figure 25. Radial power distribution and relative error for APR04V04

68

Figure 26. Radial power distribution and relative error for APR04V05

69

Figure 27. Radial power distribution and relative error for APR04V07

70

Figure 28. Radial power distribution and relative error for APR04V08

71

Figure 29. Radial power distribution and relative error for APR05V02

72

Figure 30. Radial power distribution and relative error for APR05V04

73

Figure 31. Radial power distribution and relative error for APR05V05

74

Figure 32. Radial power distribution and relative error for APR05V06

75

Figure 33. Radial power distribution and relative error for APR05V07

76

Reference

1. S. Choi and D. Lee, “Three-dimensional method of characteristics/diamond-difference transport analysis method in STREAM for whole-core neutron transport calculation,” Comput. Phys. Commun., vol. 260, p. 107332, 2021, doi: 10.1016/j.cpc.2020.107332.

2. H. J. Shim, B. S. Han, S. J. Jong, H. J. Park, and C. H. Kim, “McCard: Monte Carlo code for advanced reactor design and analysis,” Nucl. Eng. Technol., vol. 44, no. 2, pp. 161–176, 2012, doi: 10.5516/NET.01.2012.503.

3. H. Lee et al., “MCS – A Monte Carlo particle transport code for large-scale power reactor analysis,” Ann. Nucl.

Energy, vol. 139, p. 107276, 2020, doi: 10.1016/j.anucene.2019.107276.

4. International Atomic Energy Agency, “Status Report 83-Advanced Power Reactor 1400MWe (APR1400),” p.

37, 2011.

5. K. E. Barr, S. Choi, J. Kang, and B. Kochunas, “Verification of mpact for the apr1400 benchmark,” Energies, vol. 14, no. 13, 2021, doi: 10.3390/en14133831.

6. S. Yuk and J. Y. Cho, “DeCART Solutions of APR1400 Reactor Core Benchmark Problems,” pp. 17–18.

7. H. Hong and H. G. Joo, “Analysis of the APR1400 PWR Initial Core with the nTRACER Direct Whole Core Calculation Code and the McCARD Monte Carlo Code,” Trans. Korean Nucl. Soc. Spring Meet. Jeju, Korea, pp.

1–4, 2017.

8. KAERI, “APR1400 Reactor Core Benchmark Problem Book,” vol. 53, no. 9, pp. 1689–1699, 2019, [Online].

Available:https://baylorir.tdl.org/handle/2104/10374%0Ahttps://baylorir.tdl.org/handle/2104/9313%0Ahttp://repo sitory.uinjkt.ac.id/dspace/handle/123456789/3989%0Ahttp://www.albayan.ae

9. H. J. Shim, B. S. Han and C. H. Kim, "Development and Verification of McCARD Gamma- Ray Transport Routine," Seoul National University,Spring Meet,Korea

10. J. Leppänen, “Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. VTT Technical Research,” Cent. Finl., 2019, [Online]. Available: http://serpent.vtt.fi/mediawiki/index.php/Main 11. T. M. Sutton et al., “The MC21 Monte Carlo transport code,” Jt. Int. Top. Meet. Math. Comput. Supercomput.

Nucl. Appl. M C + SNA 2007, 2007.

77

12. K. Wang et al., “RMC - A Monte Carlo code for reactor core analysis,” Ann. Nucl. Energy, vol. 82, pp. 121–

129, 2015, doi: 10.1016/j.anucene.2014.08.048.

13. Y. Choi, H. K. Cho, and J. Y. Cho, “Multi-physics Solution of VERA Core Physics Benchmark using CUPID and nTER,” Trans. Korean Nucl. Soc. Autumn Meet. Goyang, 2019.

14. U. S. N. R. Commission, “Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses Prepared by Office of Nuclear Regulatory Research,” 2001.

Dalam dokumen Ran Lee (Halaman 64-90)

Dokumen terkait