• Tidak ada hasil yang ditemukan

Conclusion

Dalam dokumen Sohaib Umer (Halaman 57-64)

In summary, we have performed an in-depth theoretical investigation on GaN monolayer supported TM-SACs and elucidated various mechanistic pathways towards CO2RR. Using stability descriptors (Estab and Udiss), we implied that the proposed catalysts are thermodynamically and electrochemically stable. Through Bader charge analysis, we show that a well-defined active site and directional charge transfer from surface to adsorbate is imperative for achieving a high catalytic performance. A comparative mechanistic analysis further revealed that CO2RR on Ti/V/Cr/Mn/Zr/Nb/Mo/Ru/Rh/Hf/

Ta/W/Re embedded SACs proceeds via two-electron pathway and yield HCOOH, rather than CO, while the Os- and Ir-SACs follow *COOH route to generate *CO, which leads to a more facile reaction pathway to produce CH4. By calculating the energy barrier at each step, we find that the Mn- and Rh- SACs have the best catalytic activity towards the formation of HCOOH with the lowest UL(s) of -0.50 V and -0.42 V, respectively, while the Ir-SAC exhibits a better catalytic activity for CH4 production with a UL of -0.48 V and a selectivity of 97% against the competing HER process, credited to its moderate binding with various CO2RR intermediates. We envision that the mechanistic insights demonstrated in this work stimulate further interest to design new high-performance CO2RR catalysts.

46

REFERENCES

1. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E.

Stephens, K. Chan and C. Hahn, Chemical reviews, 2019, 119, 7610-7672.

2. S. Navarro-Jaén, M. Virginie, J. Bonin, M. Robert, R. Wojcieszak and A. Y. Khodakov, Nature Reviews Chemistry, 2021, 5, 564-579.

3. X. Tan, C. Yu, Y. Ren, S. Cui, W. Li and J. Qiu, Energy & Environmental Science, 2021, 14, 765-780.

4. S. Xu and E. A. Carter, Chemical reviews, 2018, 119, 6631-6669.

5. H. Ritchie, M. Roser and P. Rosado, Our world in data, 2020.

6. H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai and R. Chen, Nature Energy, 2018, 3, 140-147.

7. Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan and Q. Jiang, Angewandte Chemie International Edition, 2021, 60, 8798-8802.

8. J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov and T. F. Jaramillo, Acs Catalysis, 2017, 7, 4822-4827.

9. B. Zhou, X. Kong, S. Vanka, S. Cheng, N. Pant, S. Chu, P. Ghamari, Y. Wang, G. Botton and H. Cuo, Energy & Environmental Science, 2019, 12, 2842-2848.

10. J. Wu, M. Liu, P. P. Sharma, R. M. Yadav, L. Ma, Y. Yang, X. Zou, X.-D. Zhou, R. Vajtai and B. I. Yakobson, Nano Letters, 2016, 16, 466-470.

11. X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero and H. Wang, Nature Energy, 2020, 5, 684-692.

12. Y. Wang, T. Liu and Y. Li, Chemical Science, 2022, 13, 6366-6372.

13. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard and T. F. Jaramillo, Journal of the American Chemical Society, 2014, 136, 14107-14113.

14. H. Zhang, X. Chang, J. G. Chen, W. A. Goddard, B. Xu, M.-J. Cheng and Q. Lu, Nature communications, 2019, 10, 1-9.

15. S. Back, H. Kim and Y. Jung, Acs Catalysis, 2015, 5, 965-971.

16. H. Xu, D. Rebollar, H. He, L. Chong, Y. Liu, C. Liu, C.-J. Sun, T. Li, J. V. Muntean and R. E.

Winans, Nature Energy, 2020, 5, 623-632.

17. Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai and X. Liu, Journal of the American Chemical Society, 2020, 142, 12760-12766.

18. B. Boates, A. M. Teweldeberhan and S. A. Bonev, Proceedings of the National Academy of Sciences, 2012, 109, 14808-14812.

47

19. S. H. Lee, J. C. Lin, M. Farmand, A. T. Landers, J. T. Feaster, J. E. Avilés Acosta, J. W.

Beeman, Y. Ye, J. Yano and A. Mehta, Journal of the American Chemical Society, 2020, 143, 588-592.

20. Y. Hori, K. Kikuchi and S. Suzuki, Chemistry Letters, 1985, 14, 1695-1698.

21. L. Yuan, S.-F. Hung, Z.-R. Tang, H. M. Chen, Y. Xiong and Y.-J. Xu, ACS Catalysis, 2019, 9, 4824-4833.

22. M. C. Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, N. López and M. Koper, Nature Catalysis, 2021, 4, 654-662.

23. G. Liu, M. Lee, S. Kwon, G. Zeng, J. Eichhorn, A. K. Buckley, F. D. Toste, W. A. Goddard and F. M. Toma, Proceedings of the National Academy of Sciences, 2021, 118.

24. C. G. Vayenas, R. E. White and M. E. Gamboa-Aldeco, Modern Aspects of Electrochemistry 42, Springer Science & Business Media, 2008.

25. N. Mardirossian and M. Head-Gordon, Molecular Physics, 2017, 115, 2315-2372.

26. K. Burke and L. O. Wagner, International Journal of Quantum Chemistry, 2013, 113, 96-101.

27. P. Hohenberg and W. Kohn, Physical review, 1964, 136, B864.

28. W. Kohn and L. J. Sham, Physical review, 1965, 140, A1133.

29. M. Levy, Physical Review A, 1982, 26, 1200.

30. S. Trasatti, Pure and Applied Chemistry, 1986, 58, 955-966.

31. G. Jerkiewicz, ACS Catalysis, 2020, 10, 8409-8417.

32. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H.

Jonsson, The Journal of Physical Chemistry B, 2004, 108, 17886-17892.

33. S. Wang, B. Temel, J. Shen, G. Jones, L. C. Grabow, F. Studt, T. Bligaard, F. Abild-Pedersen, C. H. Christensen and J. K. Nørskov, Catalysis Letters, 2011, 141, 370-373.

34. S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skulason, E. Fernández, B.

Hvolbæk, G. Jones and A. Toftelund, Physical Chemistry Chemical Physics, 2011, 13, 20760- 20765.

35. F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and J. Zhang, Angewandte Chemie, 2017, 129, 520-524.

36. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang and Y. Xie, Nature, 2016, 529, 68-71.

37. S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang and S. Yang, Angewandte Chemie International Edition, 2016, 55, 698-702.

38. M. Zafari, A. S. Nissimagoudar, M. Umer, G. Lee and K. S. Kim, Journal of Materials Chemistry A, 2021, 9, 9203-9213.

48

39. S. Back and Y. Jung, ACS Energy Letters, 2017, 2, 969-975.

40. C. Ling, L. Shi, Y. Ouyang, Q. Chen and J. Wang, Advanced Science, 2016, 3, 1600180.

41. J. Fu, H. Bao, Y. Liu, Y. Mi, Y. Qiu, L. Zhuo, X. Liu and J. Luo, Small, 2020, 16, 1905825.

42. X. Yang, J. Nash, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J. G. Chen, Y.

Yan and B. Xu, Journal of the American Chemical Society, 2018, 140, 13387-13391.

43. Z.-Q. Liang, T.-T. Zhuang, A. Seifitokaldani, J. Li, C.-W. Huang, C.-S. Tan, Y. Li, P. De Luna, C. T. Dinh and Y. Hu, Nature communications, 2018, 9, 1-8.

44. M. Ha, D. Y. Kim, M. Umer, V. Gladkikh, C. W. Myung and K. S. Kim, Energy &

Environmental Science, 2021, 14, 3455-3468.

45. Z. Zhang, J. Xiao, X. J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng and Y. Wang, Angewandte Chemie International Edition, 2018, 57, 16339-16342.

46. Y. Wang, L. You and K. Zhou, Chemical science, 2021, 12, 14065-14073.

47. Y. Xiao and W. Zhang, Nanoscale, 2020, 12, 7660-7673.

48. R. Anand, A. S. Nissimagoudar, M. Umer, M. Ha, M. Zafari, S. Umer, G. Lee and K. S. Kim, Advanced Energy Materials, 2021, 11, 2102388.

49. Y. Chen, J. Cai, P. Li, G. Zhao, G. Wang, Y. Jiang, J. Chen, S. X. Dou, H. Pan and W. Sun, Nano Letters, 2020, 20, 6807-6814.

50. K. L. Chagoya, D. J. Nash, T. Jiang, D. Le, S. Alayoglu, K. B. Idrees, X. Zhang, O. K. Farha, J. K. Harper and T. S. Rahman, ACS Sustainable Chemistry & Engineering, 2021, 9, 2447- 2455.

51. S. Tang, X. Zhou, S. Zhang, X. Li, T. Yang, W. Hu, J. Jiang and Y. Luo, ACS applied materials

& interfaces, 2018, 11, 906-915.

52. Q. Lu, K. Eid, W. Li, A. M. Abdullah, G. Xu and R. S. Varma, Green Chemistry, 2021, 23, 5394-5428.

53. S. Shinde, A. Sami and J.-H. Lee, Journal of Materials Chemistry A, 2015, 3, 12810-12819.

54. X. Liu, W. Yang, L. Chen, Z. Liu, L. Long, S. Wang, C. Liu, S. Dong and J. Jia, ACS Applied Materials & Interfaces, 2020, 12, 4463-4472.

55. M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P.

Phillips, W. Zhu and R. Haasch, Nature communications, 2014, 5, 1-8.

56. P. Abbasi, M. Asadi, C. Liu, S. Sharifi-Asl, B. Sayahpour, A. Behranginia, P. Zapol, R.

Shahbazian-Yassar, L. A. Curtiss and A. Salehi-Khojin, ACS nano, 2017, 11, 453-460.

57. X. Hong, K. Chan, C. Tsai and J. K. Nørskov, Acs Catalysis, 2016, 6, 4428-4437.

58. S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel and K.

S. Kim, Advanced Energy Materials, 2019, 9, 1900624.

49

59. J. N. Tiwari, A. N. Singh, S. Sultan and K. S. Kim, Advanced Energy Materials, 2020, 10, 2000280.

60. M. Umer, S. Umer, M. Zafari, M. Ha, R. Anand, A. Hajibabaei, A. Abbas, G. Lee and K. S.

Kim, Journal of Materials Chemistry A, 2022, 10, 6679-6689.

61. J. Mahmood, F. Li, S.-M. Jung, M. S. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Y. Jeong and J.-B. Baek, Nature nanotechnology, 2017, 12, 441-446.

62. D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y. A. Haleem, S. Duan, J. Lu and B. Ge, Nature Energy, 2019, 4, 512-518.

63. J. N. Tiwari, S. Sultan, C. W. Myung, T. Yoon, N. Li, M. Ha, A. M. Harzandi, H. J. Park, D.

Y. Kim and S. S. Chandrasekaran, Nature Energy, 2018, 3, 773-782.

64. J. N. Tiwari, N. K. Dang, S. Sultan, P. Thangavel, H. Y. Jeong and K. S. Kim, Nature Sustainability, 2020, 3, 556-563.

65. H. Jin, S. Sultan, M. Ha, J. N. Tiwari, M. G. Kim and K. S. Kim, Advanced Functional Materials, 2020, 30, 2000531.

66. J. N. Tiwari, A. M. Harzandi, M. Ha, S. Sultan, C. W. Myung, H. J. Park, D. Y. Kim, P.

Thangavel, A. N. Singh and P. Sharma, Advanced Energy Materials, 2019, 9, 1900931.

67. A. M. Harzandi, S. Shadman, M. Ha, C. W. Myung, D. Y. Kim, H. J. Park, S. Sultan, W.-S.

Noh, W. Lee and P. Thangavel, Applied Catalysis B: Environmental, 2020, 270, 118896.

68. H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang and B. D. McCloskey, Nature Catalysis, 2018, 1, 282-290.

69. P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A. N. Singh, A. M. Harzandi and K. S. Kim, Energy & Environmental Science, 2020, 13, 3447-3458.

70. L. Zhang, K. Doyle-Davis and X. Sun, Energy & Environmental Science, 2019, 12, 492-517.

71. P. Thangavel, G. Kim and K. S. Kim, Journal of Materials Chemistry A, 2021, 9, 14043-14051.

72. X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen and S. Huang, Journal of the American Chemical Society, 2020, 142, 5709-5721.

73. B. H. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov and D. R. MacFarlane, Nature Catalysis, 2019, 2, 290-296.

74. M. Zafari, M. Umer, A. S. Nissimagoudar, R. Anand, M. Ha, S. Umer, G. Lee and K. S. Kim, The Journal of Physical Chemistry Letters, 2022, 13, 4530-4537.

75. M. Zafari, D. Kumar, M. Umer and K. S. Kim, Journal of Materials Chemistry A, 2020, 8, 5209-5216.

76. N. Jiang, Z. Zhu, W. Xue, B. Y. Xia and B. You, Advanced Materials, 2022, 34, 2105852.

77. Y. Wu, Z. Jiang, X. Lu, Y. Liang and H. Wang, Nature, 2019, 575, 639-642.

50

78. C. Liu, T. R. Cundari and A. K. Wilson, The Journal of Physical Chemistry C, 2012, 116, 5681- 5688.

79. A. M. Harzandi, S. Shadman, A. S. Nissimagoudar, D. Y. Kim, H. D. Lim, J. H. Lee, M. G.

Kim, H. Y. Jeong, Y. Kim and K. S. Kim, Advanced Energy Materials, 2021, 11, 2003448.

80. W. Ju, A. Bagger, G.-P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J.

Rossmeisl and P. Strasser, Nature Communications, 2017, 8, 1-9.

81. Y. Song, W. Chen, C. Zhao, S. Li, W. Wei and Y. Sun, Angewandte Chemie, 2017, 129, 10980- 10984.

82. Z. Y. Al Balushi, K. Wang, R. K. Ghosh, R. A. Vilá, S. M. Eichfeld, J. D. Caldwell, X. Qin, Y.-C. Lin, P. A. DeSario and G. Stone, Nature materials, 2016, 15, 1166-1171.

83. N. Sanders, D. Bayerl, G. Shi, K. A. Mengle and E. Kioupakis, Nano letters, 2017, 17, 7345- 7349.

84. L. Li, J. M. P. Martirez and E. A. Carter, ACS Catalysis, 2020, 10, 12841-12857.

85. T. Jing, D. Liang, M. Deng, S. Cai and X. Qi, ACS Applied Nano Materials, 2021, 4, 7125- 7133.

86. J. Tian, L. Liu and F. Lu, Materials Science in Semiconductor Processing, 2022, 141, 106436.

87. G. Kresse and J. Furthmüller, Physical review B, 1996, 54, 11169.

88. G. Kresse and D. Joubert, Physical review b, 1999, 59, 1758.

89. B. Hammer, L. B. Hansen and J. K. Nørskov, Physical review B, 1999, 59, 7413.

90. A. Tkatchenko and M. Scheffler, Physical review letters, 2009, 102, 073005.

91. S. Bhattacharjee, U. V. Waghmare and S.-C. Lee, Scientific reports, 2016, 6, 1-10.

92. K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. Arias and R. G. Hennig, The Journal of chemical physics, 2014, 140, 084106.

93. G. Henkelman, B. P. Uberuaga and H. Jónsson, The Journal of chemical physics, 2000, 113, 9901-9904.

94. A. Hajibabaei, C. W. Myung and K. S. Kim, Physical Review B, 2021, 103, 214102.

95. A. Hajibabaei and K. S. Kim, The Journal of Physical Chemistry Letters, 2021, 12, 8115-8120.

96. M. Ha, A. Hajibabaei, D. Y. Kim, A. N. Singh, J. Yun, C. W. Myung and K. S. Kim, Advanced Energy Materials, 2022, 2201497.

97. S. Kattel, B. Yan, Y. Yang, J. G. Chen and P. Liu, Journal of the American Chemical Society, 2016, 138, 12440-12450.

98. L. Fu, R. Wang, C. Zhao, J. Huo, C. He, K.-H. Kim and W. Zhang, Chemical Engineering Journal, 2021, 414, 128857.

51

Acknowledgements

All praise is due to Allah, the Creator and Sustainer of the universe, for His showers of blessings throughout my research work to complete the research successfully, and may His peace and blessings be upon our Holy Prophet, the ever-shining torch of guidance, knowledge, love and peace for entire humanity.

I would first and foremost like to thank my supervisor Prof. Geunsik Lee who trusted in my skills. The knowledge I have gained under his leadership is invaluable and I will be forever grateful to him as one of his research students. I am deeply thankful to Prof. Kwang Soo Kim, for his support at every step.

This study would have not been possible without his continuous rigorous critique, scholarly comments, suggestions, and inspiring guidance.

I wish to thank my committee member Prof. Myung Jong Kim who was more than generous with his expertise and precious time.

I appreciate and thank all my lab fellows for their constant support and encouragement. I appreciate and specially thank, Muhammad Umer who guided me at every step of the research - from planning to completion.

I dedicate this work to my parents, sisters, and brother for their endless love, support and encouragement throughout my life.

Thank you all for the incredible support.

Dalam dokumen Sohaib Umer (Halaman 57-64)

Dokumen terkait