In this thesis, the graphene nanophotonic modulators for near-infrared and mid-infrared applications are proposed. The graphene has unique properties such as zero bandgap, tunable absorption characteristic, and high carrier mobility. Based on these properties, graphene-based photonic devices have been researched. Among graphene-based devices, the optical modulators based on the tunable characteristics of graphene have been spotlighted. In the near-infrared regime, graphene is used for the electroabsorption modulators (EAMs) since the chemical potential of graphene controls the absorption.
In the mid-infrared regime, graphene is used for the plasmonic modulators since graphene plasmon (GP) exists in the mid-infrared and its property can be tuned by controlling the chemical potential of graphene.
In the near-infrared, popular platform for the graphene optical modulators is the conventional silicon (Si) waveguide. Conventional Si waveguides integrated with graphene layers have been investigated as the EAMs. The modulation depth of one of those EAMs is just 0.16 dB/μm. In order to make the EAM more compact and faster, other approaches should be investigated. In this thesis, two approaches are suggested. One is using an inverted-rib-type (IRT) Si waveguide and the other is using a metal-insulator-silicon-insulator-metal (MISIM) waveguide. The EAM based on the IRT Si waveguide with double graphene capacitor is theoretically investigated. The modulation depth of the IRT Si waveguide is 0.41 dB/μm and its electrical bandwidth and optical bandwidth are calculated to 46.4 GHz and over 100 nm. The EAM based on the MISIM waveguide integrated with solid-electrolyte- gated graphene is experimentally demonstrated. The modulation depth of the MISIM waveguide is 0.276 dB/μm. For the faster operation, the MISIM waveguide with graphene capacitor would be a solution. The ideal electrical bandwidth of the MISIM waveguide with graphene capacitor would be expected to 185 GHz.
In the mid-infrared, GP exists, which is a collective electron oscillation at the graphene. The electromagnetic wave associated with GP is called as GP polariton (GPP). Many researches about GP- based or GPP-based devices are introduced theoretically. However, those devices do not consider the integration with other mid-infrared devices. Also, another approaches for exploiting GP are essential.
In this thesis, the mid-infrared graphene plasmonic modulator has been designed. This modulator is based on a coupling a hybrid plasmonic waveguide mode (HPWM) to GP by zinc sulfide (ZnS) subwavelength grating. The modulation depth of the modulator is simulated to 25.25 dB. And the electrical and optical bandwidth would be expected to be 29.3 GHz and 154 GHz, respectively.
explained and the optical devices such as ZnS perfect absorber, ZnS anti-reflection, and ZnS metasurfaces are fabricated and characterized. In addition, based on this ZnS nanopattern fabrication, excitation of GP by ZnS subwavelength grating is demonstrated in various grating and graphene structures. There are ZnS subwavelength grating and ZnS sampled grating integrated with solid- electrolyte-gated single graphene, and ZnS subwavelength grating with double graphene capacitor. By measuring the reflectance spectra of these grating structures with applying electric voltage on the graphene, the peak shift and the reflectance modulation have been demonstrated well.
Finally, the mid-infrared metal-insulator-metal (MIM) modulator is demonstrated as a proof- of-concept study for the coupling GP from the waveguide mode. The operation principle of the modulator is coupling GP excited by ZnS subwavelength grating from the MIM waveguide mode, then the magnetic dipole resonance (MDR) which results in the perfect absorption is hindered by the GP.
Therefore, the reflectance at the wavelength of MDR becomes higher. The modulation of reflectance is about 65% when applied voltage on graphene is 15 V. This modulator behavior can be thought like a plasmon-induced transparency. This work is not only the proof-of-concept study for coupling GP, but also demonstration of efficient mid-infrared free-space modulator. Also, this mid-IR MIM device can be interpreted as the analogue of electromagnetically-induced transparency. There is the destructive interference between the MDR and the GP.
I sincerely expect that studies in this thesis would be a foundation stone for novel graphene nanophotonic modulators with compact size, large electrical and optical bandwidth, high operation speed, and low energy consumption for next-generation optical communications in the future.
References
[1] A. Geim, and K. S. Novoselov, “The rise of graphene,” Nat. Mat., vol. 6, pp. 183-191, Mar. 2007.
[2] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer,
“Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9-10, pp.351- 355, Jun. 2008.
[3] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol.,vol. 3 , pp. 654-659, Nov.
2008.
[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109-162, Jan.-Mar. 2009.
[5] R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: A review,” Compos. Sci. Technol., vol. 72, no. 12, pp. 1459-1476, Jul. 2012.
[6] M. Yi, and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,”
J. Mater. Chem. A, vol. 3, pp. 11700-11715, Mar. 2015.
[7] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K.
Banerjee, L. Colombo, R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene folms on copper foils,” Science, vol. 324, no. 5932, pp. 1312-1314, Jun. 2009.
[8] S. J. Chae, F. Gűneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y.
Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-are graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation,” Adv. Mater., vol. 21, pp. 2328- 2333, Jun. 2009.
[9] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Őzyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol., vol. 5, pp. 574-578, Jun. 2010.
[10] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys.
Rev. Lett., vol. 97, no. 18, pp. 187401, Nov. 2006.
[11] J. A. Robinson, M. Weterington, J. L. Tedesco, P. M. Campbel, X. Weng, J. Stitt, M. A. Fanton,
“Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale,” Nano Lett., vol. 9, no. 8, pp. 2873-2876, July 2009.
[12] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, “Realization of high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric,” Appl. Phys. Lett., vol.
94, no. 6, pp. 062107, Feb. 2009.
[13] J. S. Moon, M. Antcliffe, H. C. Seo, D. Curtis, S. Lin, A. Schmitz, I. Milosavljevic, A. A. Kiselev, R. S. Ross, D. K. Gaskill, P. M. Campbell, R. C. Fitch, K.-M. Lee, and P. Asbeck, “Ultra-low resistance ohmic contacts in graphene field effect transistors,” Appl. Phys. Lett., vol. 100, no. 20, pp. 203512, May 2012.
[14] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, vol. 438, pp. 201-204, Nov. 2005.
[15] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett., vol. 99, no. 24, pp. 246803, Dec. 2007.
[16] L. A. Falkovsky, “Optical properties of graphene and IV-VI semiconductors,” Phys.-Usp., vol. 51, no. 9, pp. 887-897, Mar. 2008.
[17] A. Y. Nikitin, F. J. Garcia-Vidal, and L. Martin-Moreno, “Analytical expression for the electromagnetic dyadic Green’s function in graphene and thin layers,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 3, pp. 4600611, May-Jun. 2013.
[18] S. Hossein Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Forzdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett., vol. 13, no. 3, pp.
1111-1117, Feb. 2013.
[19] Cisco Systems Inc., “Cisco visual networking index: global mobile data traffic forecast update
[22] A. F. J. Levi, “Silicon photonics’ last-meter problem: Economics and physics still pose challenges to “fiber to the processor” Tech,” IEEE Spectrum, vol. 55, no. 9, pp. 38-43, Sep. 2018.
[23] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P.
Dumon, P. Bienstaman, D. Van Thourhout, and R. Baets, “Silicon microring resonator,” Laser Photonics Rev., vol. 6, no. 1, pp. 47-73, Jan. 2012
[24] M. Soltani, and S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chi-scale silicon photonics,” Opt. Express, vol. 15, no. 8, pp. 4694-4704, Apr. 2007.
[25] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck,
“High speed silicon Mach-Zehnder modulator,” Opt. Express, vol. 13, no. 8, pp. 3120-3135, Apr. 2005.
[26] T. K. Liang, and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon- on-insulator waveguides,” IEEE Photonics Technol. Lett., vol. 17, no. 2, pp. 393-395, Feb. 2005.
[27] A. W. Poon, X. Luo, F. xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE, vol. 97, no. 2, pp. 1216-1238, Jul. 2009,
[28] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia,
“A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature, vol.
427, pp. 615-618, Feb. 2004.
[29] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat.
Photonics, vol. 4, pp. 518-526, Jul. 2010.
[30] D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N.
Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett., vol. 24, no. 4, pp. 234-236, Feb. 2012.
[31] L. Vivien, A. Polzere, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C.
Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express, vol. 20, no. 2, pp. 1096-1101, Jan. 2012.
[32] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laer,” Nature, vol. 433, pp. 725-728, Feb. 2005.
[33] G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,”
Opt. Express, vol. 18, no. 21, pp. 22215-22221, Oct. 2010.
[34] B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt.
Lett., vol. 37, no. 12, pp. 2253-2255, Jun. 2012.
[35] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, no. 12, pp. 1687-1706, Dec.
1993.
[36] SW Chung, M. Nakai, and H. Hashemi, “Low-power thermo-optic silicon modulator for large- scale photonic integrated systems,” Opt. Express, vol. 27, no. 9, pp. 13430-13459, Apr. 2019.
[37] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,”
Nature, vol. 435, pp. 325-327, May 2005.
[38] M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach- Zehnder modulator near 1300 nm,” Opt. Express, vol. 21, no. 25, pp. 30350-30357, Dec. 2013.
[39] A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “High-speed silicon electro-optic microring modulator for optical interconnects,” IEEE Photonics Technol. Lett., vol. 26, no. 10, pp.
1042-1044, May 2014.
[40] S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, G. Roelkens, K.
Sarawat, D. Van Thourhout, P. Absil, and J. Van Campenhout, “56 Gb/s Germanium waveguide electro-absorption modulator,” J. Light. Technol., vol. 34, no. 2, pp. 419-424, Jan. 2016.
[41] S. A. Srinivasan, P. Verheyen, R. Loo, I. De Wolf, M. Pantouvaki, G. Lepage, S. Balakrishnan, W.
Vanherle, P. Absil, and J. Van Campenhout, “50 Gb/s C-band GeSi waveguide electro-absorption modulator,” in Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2016, pp. Tu3D.7.
[42] F. Wang, Y. Zhang, C. Tian, A. zettl, M. Crommie, and Y. Ron Shen, “Gate-variable optical transitions in graphene,” Science, vol. 320, no. 5873, pp. 206-209, Apr. 2008.
[46] M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express, vol. 22, no. 12, pp.
15292-15297, Jun. 2014.
[47] C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics, vol. 9, pp. 511-514, Jul. 2015.
[48] Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev., vol. 10, no. 2, pp. 307-316, Jan. 2016.
[49] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J.
Bao, and Y. Ron Shen, “Ultrafast all-optical graphene modulator,” Nano Lett., vol. 14, no. 2, pp. 955- 959, Jan. 2014.
[50] J. T. Kim, H. Choi, Y. Choi, and J. H. Cho, “Ion-gel-gated graphene optical modulator with hysteretic behavior,” ACS Appl. Mater. Interfaces, vol. 10, no. 2, pp. 1836-1345, Dec. 2017.
[51] D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevonyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulator,” Nat. Comm., vol. 6, pp. 8846, Nov. 2015.
[52] Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, K. J. Jin, N. A. Mortensen, and S. Xiao, “Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides,”
Nanoscale, vol. 9, no. 40, pp. 15576-15581, Sep. 2017.
[53] Y. Kim, and M.-S. Kwon, “Electroabsorption modulator based on inverted-rib-type silicon waveguide including double graphene layers,” J. Opt., vol. 19, no. 4, pp. 045804, Mar. 2017.
[54] Y. Kim, and M.-S. Kwon, “Solid-electrolyte-gated graphene-covered metal-insulator-silicon- insulator-metal waveguide with a remarkably large modulation depth,” IEEE Access, vol. 7, pp.
174312-174324, Dec. 2019.
[55] S. J. Koester, and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Top.
Quantum Electron., vol. 20, no. 1, pp. 6000211, Jan.-Feb. 2014.
[56] J. Yota, H. Shen, and R. Ramanathan, “Characterization of atomic layer deposition of HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal-insulator-metal capacitor dielectric for GaAs HBT technology,” J. Vac. Sci. Technol. A, vol. 31, no. 1, pp. 01A134, Dec. 2012.
[57] S. J. Koester, H. Li, and M. Li, “Switching energy limits of waveguide-coupled graphene-on-
[58] V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer graphene phase modulators in SOI,” Opt. Express, vol. 23, no. 5, pp. 6478-6490, Mar. 2015.
[59] I. Goykhman, B. Desiatov and U. Levy, "Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide", Appl. Phys. Lett., vol. 97, no. 14, pp. 141106, Oct. 2010.
[60] S. Zhu, T. Y. Liow, G. Q. Lo and D. L. Kwong, "Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration", Opt. Express, vol. 19, no. 9, pp. 8888-8902, Apr. 2011.
[61] M.-S. Kwon, J.-S. Shin, S.-Y. Shin and W.-G. Lee, "Characterizations of realized metal-insulator- silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal", Opt. Express, vol. 20, no. 20, pp. 21875-21887, Sep. 2012.
[62] S. Zhu, G. Q. Lo and D. L. Kwong, "Electro-absorption modulation in horizontal metal-insulator- silicon-insulator-metal nanoplasmonic slot waveguides", Appl. Phys. Lett., vol. 99, no. 15, pp. 151114, Oct. 2011.
[63] S. Zhu, G. Q. Lo and D. L. Kwong, "Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths", Opt. Express, vol. 20, no. 14, pp.
15232-15246, Jul. 2012.
[64] Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow and G.-Q. Lo, "CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform", Opt. Express, vol.
21, no. 10, pp. 12790-12796, May 2013.
[65] M.-S. Kwon and J.-S. Shin, "Investigation of 90° submicrometer radius bends of metal-insulator- silicon-insulator-metal waveguides", Opt. Lett., vol. 39, no. 3, pp. 715-718, Feb. 2014.
[66] B. Ku, J.-S. Shin and M.-S. Kwon, "Experimental investigation of plasmofluidic waveguides", Appl. Phys. Lett., vol. 107, no. 20, pp. 201104, Nov. 2015.
[67] M.-S. Kwon, B. Ku and Y. Kim, "Plasmofluidic disk resonators", Sci. Rep., vol. 6, pp. 23149, Mar.
[70] M. J. Panzer and C. D. Frisbie, ‘‘Polymer electrolyte-gated organic field-effect transistors: Low- voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density,’’ J. Amer. Chem. Soc., vol. 129, no. 20, pp. 6599–6607, May 2007.
[71] M. K. Vyas and A. Chandra, ‘‘Ion–electron-conducting polymer composites: Promising electromagnetic interference shielding material,’’ ACS Appl. Mater. Interfaces, vol. 8, no. 28, pp.
18450–18461, Jun. 2016.
[72] Editorial, “Extending opportunity,” Nat. Photonics, vol. 6, pp. 407, Jul. 2012.
[73] H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen,
“Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE, vol. 5616, pp. 27-38, Dec. 2004.
[74] B. Schwarz, P. Reininger , D. Ristanić , H. Detz , A. M. Andrews , W. Schrenk, and G. Strasser,
“Monolithically integrated mid-infrared lab-on-a-chip using plasmonic and quantum cascade structures,”
Nat. Commun., vol. 5, pp. 4085, Jun. 2014.
[75] M. Sieger, and B. Mizaikoff, “Toward on-chip mid-infrared sensors,” Anal. Chem., vol. 88, no. 11, pp. 5562-5573, Apr. 2016.
[76] L. Labadie, and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express, vol. 17, no. 3, pp. 1947-1962, Feb. 2009.
[77] R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R.
Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivico, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade laser,” Electron. Lett., vol. 37, no.
3, pp. 191-193, Feb. 2001.
[78] Q. Hao, G. Zhu, S. Yang, K. Yang, T. Duan, X. Xie, K. Huang, and H. Zeng, “Mid-infrared transmitter and receiver modules for free-space optical communication,” Appl. Opt., vol. 56, no. 8, pp.
2260-2264, Mar. 2017.
[79] Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade laser,” Nat. Photonics, vol. 6, pp. 432-439, Jun. 2012.
[80] J. Haas, and B. Mizaikoff, “Advances in mid-infrared spectroscopy for chemical analysis,” Annu.
Rev. Anal. Chem., vol. 9 pp. 45-68, Jun. 2016.
[81] R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics, vol. 4, pp. 495-497,
[82] R. Shankar, and M. Lončar, “Silicon photonic devices for mid-infrared applications,”
Nanophotonics, vol. 3, no. 4-5, pp. 329-341, Nov. 2013.
[83] P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev., vol. 8, no. 2, pp. L23-L28, Jan. 2014.
[84] V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P.
Soliani, B. Zdyrkko, I. Luzinov, S. Novak, J. Novak, P. Watchtel, S. Danto, J. D. Musgraves, K.
Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater., vol. 15, pp. 014603, Jan. 2014.
[85] J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K.
Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett., vol. 42, no. 11, pp. 2094-2097, Jun. 2017.
[86] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E.
Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O'Brien, G. Z.
Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt., vol. 18, no. 7, pp. 073003, Jun. 2016.
[87] A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett., vol. 97, no. 21, pp. 213501, Nov. 2010.
[88] Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J., vol. 4, no. 5, pp. 1510-1519, Aug. 2012.
[89] B. Troia, A. Z. Khokhar, M. Nedeljkovic, J. S. Penades, V. M. N. Passaro, and G. Z. Mashanovich,
“Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared,”Opt. Express, vol. 22, no. 20, pp. 23990–24003, Oct. 2014.
[90] B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and
[93] M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range,” IEEE Photonics J., vol. 3, no. 6, pp. 1171-1180, Oct. 2011.
[94] A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics, vol.
6, pp. 749-758, Nov. 2012.
[95] T. Low, and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano, vol. 8, no. 2, pp. 1086-1101, Jan. 2014.
[96] A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B, vol. 84, no.16, pp. 161407, Oct. 2011.
[97] J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic wavegeuides:
nano modulators and nano attenuators,” Laser Photonics Rev., vol. 8, no. 4, pp. 569-574, Mar. 2014.
[98] J. Zheng, L. Yu, S. He, and D. Dai, “Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate,” Sci. Rep., vol. 5, pp. 7987, Jan. 2015.
[99] H. Iizuka, and S. Fan, “Deep subwavelength plasmonic waveguide switch in double graphene layer structure,” Appl. Phys. Lett., vol. 103, no. 23, pp. 233107, Dec. 2013.
[100] J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express, vol. 21, no. 13, pp. 15490-15504, Jul. 2013.
[101] J. Tao, X. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, “Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth,” Opt. Lett., vol. 39, no. 2, pp. 271-274, Jan. 2014.
[102] A. Woessner, Y. Gao, I. Torre, M. B. Lundeberg, C. Tan, K. Watanabe, T. Taniguchi, R.
Hillenbrand, J. Hone, M. Polini, and F. H. L. Koppens, “Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons,” Nat. Photonics, vol. 11, pp. 421-424, Jun. 2017.
[103] W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided mode resonances,” ACS Nano, vol. 6, no. 9, pp. 7806-7813, Aug. 2012.
[104] W. Gao, G. Shi, Z. Jin, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett., vol. 13, no. 8, pp.
3698-3702, Jul. 2013.
[105] A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett., vol. 14, no. 5, pp.
2896-2901, Apr. 2014.
[106] Y. Kim, and M.-S. Kwon, “Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon,” Nanoscale, vol. 9, pp. 17429- 17438, Oct. 2017.
[107] H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. David Musgraves, K. Richardson, and J. Hu,
“Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett., vol. 38, no. 15, pp.
2779-2782, Aug. 2013.
[108] Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid- infrared and spectroscopic sensing,” ACS Nano, vol. 8, no. 7, pp. 6955-6961, Jun. 2014.
[109] Q. An, Y. Ren, Y. Jia, J. Rodríguez, V. de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, vol. 3, no. 4, pp. 466-471, Apr. 2013.
[110] S. A. R. Firoozifar, A. Behjat, E. Kadivar, S. M. B. Ghorashi, and M. Borhani Zarandi, “A study of the optical properties and adhesion of zinc sulfide anti-reflection thin film coated on a germanium substrate,” Appl. Surf. Sci., vol. 258, no. 2, pp. 818-821, Nov. 2011.
[111] S. H. Su, M. Yokoyama, and Y. K. Su, “Reactive ion etching of ZnS films using a gas mixture of methane/hydrogen/argon,” Jap. J. Appl. Phys., vol. 37, no. 4R, pp. 1764, Apr. 1998.
[112] F. Huang, F. Jia, C. Cai, Z. Xu, C. Wu, Y. Ma, G. Fei, and M. Wang, “High- and reproducible- performance graphene/II-VI semiconductor film hybrid photodetectors,” Sci. Rep., vol. 6, pp. 28943, Jun. 2016.
[113] I.-K. Oh, J. Tanskanen, H. Jung, K. Kim, M. J. Lee, Z. Lee, S.-K. Lee, J.-H. Ahn, C. W. Lee, K.
Kim, H. Kim and H.-B.-R. Lee, “Nucleation and growth of HfO2 dielectric layer for graphene-based devices,” Chem. Mater., vol. 27, no. 17, pp. 5868-5877, Aug. 2015.