• Tidak ada hasil yang ditemukan

50

51

potentials (OFP) of 9 AVOCs and 12 BVOCs were calculated with their kOH values. Except for the OFP of α-pinene and isoprene in summer, the OFP of m,p,o-xylenes, toluene, and ethylbenzene accounted for a high contribution in all seasons. Diurnal variation showed high OFP in summer daytime (08:00~17:00) for both AVOCs and BVOCs. As a result of comparing the OFP ratio of AVOCs and BVOCs, the OFP ratio of BVOCs was higher in summer than in autumn and winter. The OFP was high in industrial sites and urban and rural sites near industrial facilities. Those results suggest that the OFPs of AVOCs and BVOCs were high during summer days, and they were highly influenced by seasonal wind and sea-land breeze with anthropogenic and biogenic emission. Although the OFP contribution of BVOCs is lower than that of AVOCs for each site, OH reactivities of BVOCs are suspected to have had a significant effect on the high-concentration O3 period in Ulsan. However, since ozone is formed by complicated reactions, there is limitation to precisely quantify the formation fraction.

There were some limitations of this study. Although 9 AVOCs and 15 BVOCs were analyzed, alkanes and aromatics which have a high concentration in the atmosphere and emission in industrial complexes, and alkenes which have high reactivity were not analyzed. It caused the underestimated results of AVOCs contribution of concentration and secondary formation. Therefore, more various photochemically reactive AVOCs should be monitored with BVOCs. As some BVOC species can be produced and emitted from anthropogenic sources like traffic and industrial facilities, it should be specific how much it was emitted from anthropogenic or biogenic sources. With the emission ratio between BVOC species and CO, Toluene, and Benzene which are obvious anthropogenically emitted compounds, the fraction of biogenic and anthropogenic sources could be quantified. Emission ratios could be calculated with the nighttime BVOCs and anthropogenic tracers. Also, the relationship of VOCs- NOx - O3 should have been identified in Ulsan. As the ozone formation reaction is complicated with the concentration of precursors and meteorological parameters, at least, the concentration of VOCs and NOx which are the main secondary formation precursors should be identified in each region. With their concentration ratio distribution in each site, we could designate the VOC-limited and NOx-limited areas in Ulsan. It would be helpful to control the regulation of ozone precursor compounds emission.

AVOC pollution from industrial facilities and human activity was a permanent problem in Ulsan and had a significant impact on the formation of O3 and SOA. BTEX, among the AVOCs, showed a considerable concentration and contribution to the secondary formation. To reduce Ulsan's pollution and secondary formation, their emission should be limited. Meanwhile, even though it is well known that plants and trees absorb particulate matter (PM), BVOCs emitted from them can also form secondary aerosol (O3 and SOA). Although BVOCs from biogenic sources had a lower concentration in the atmosphere than AVOCs, they contributed a higher level of secondary formation potential, particularly ozone formation. In Ulsan, isoprene and a-pinene had high concentrations and contributed significantly

52

to secondary production with various wind patterns. For planning the planting trees, emitting BVOCs and the wind patterns should be considered in Ulsan. Trees that emit isoprene should be carefully planted on the northwest side, where the daytime sea breeze is unaffected. On the other hand, monoterpene-emitting trees should be planted close to the coast so that they can be carried by nighttime land breeze to the East Sea. Nevertheless, as BVOC emission is influenced by meteorological circumstances and emission control is difficult, primary monitoring of the highly secondary formation contributed BVOC species, particularly isoprene and a-pinene, should be monitored. The basic temporal variation, spatial distribution, and secondary formation contribution of AVOCs and BVOCs in Ulsan are provided by this study. It could be used to support future research of secondary formation from AVOCs and BVOCs.

53

References

An, J., Zhu, B., Wang, H., Li, Y., Lin, X., & Yang, H. (2014). Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmospheric Environment, 97, 206-214.

Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34(12-14), 2063-2101.

Atkinson, R., & Arey, J. (2003). Atmospheric degradation of volatile organic compounds. Chemical reviews, 103(12), 4605-4638.

Aydin, Y. M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., & Odabasi, M. (2014). Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. Science of The Total Environment, 490, 239-253.

Baek, K.-M., Kim, M.-J., Seo, Y.-K., Kang, B.-W., Kim, J.-H., & Baek, S.-O. (2020). Spatiotemporal variations and health implications of hazardous air pollutants in Ulsan, a multi-industrial city in Korea. Atmosphere, 11(5), 547.

Bai, J., Guenther, A., Turnipseed, A., Duhl, T., & Greenberg, J. (2017). Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China.

Atmospheric Environment, 161, 176-190.

Barboni, T., & Chiaramonti, N. (2010). BTEX emissions during prescribed burning in function of combustion stage and distance from flame front. Combustion science and technology, 182(9), 1193-1200.

Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J., & Guillermo, R. (2001). An investigation into the traffic-related fraction of isoprene at an urban location. Atmospheric Environment, 35(22), 3749-3760.

Brocco, D., Fratarcangeli, R., Lepore, L., Petricca, M., & Ventrone, I. (1997). Determination of aromatic hydrocarbons in urban air of Rome. Atmospheric Environment, 31(4), 557-566.

Brown, S., Dubé, W., Bahreini, R., Middlebrook, A., Brock, C., Warneke, C., De Gouw, J., Washenfelder, R., Atlas, E., & Peischl, J. (2013). Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX. Atmospheric Chemistry and Physics, 13(22), 11317-11337.

Buczynska, A. J., Krata, A., Stranger, M., Godoi, A. F. L., Kontozova-Deutsch, V., Bencs, L., Naveau, I., Roekens, E., & Van Grieken, R. (2009). Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmospheric Environment, 43(2), 311-318.

Carslaw, D. C., & Ropkins, K. (2012). Openair—an R package for air quality data analysis.

Environmental modelling & software, 27, 52-61.

Caselli, M., de Gennaro, G., Marzocca, A., Trizio, L., & Tutino, M. (2010). Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy).

Chemosphere, 81(3), 306-311.

Chameides, W., Fehsenfeld, F., Rodgers, M., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D., Rasmussen, R., & Zimmerman, P. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research: Atmospheres, 97(D5), 6037-6055.

Chameides, W., Lindsay, R., Richardson, J., & Kiang, C. (1988). The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science, 241(4872), 1473-1475.

Chan, L. Y., Chu, K. W., Zou, S. C., Chan, C. Y., Wang, X. M., Barletta, B., Blake, D. R., Guo, H., &

Tsai, W. Y. (2006). Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial‐urban, and industrial‐suburban atmospheres of the Pearl River Delta (PRD) region of south China. Journal of Geophysical Research: Atmospheres, 111(D11).

Chang, C.-C., Lo, S.-J., Lo, J.-G., & Wang, J.-L. (2003). Analysis of methyl tert-butyl ether in the atmosphere and implications as an exclusive indicator of automobile exhaust. Atmospheric Environment, 37(34), 4747-4755.

Chang, H., Son, J., Je, S. M., Oh, C.-y., Cho, M., Kim, J., Kim, J., Choi, W.-s., & Lee, Y.-k. (2021).

54

Emission Rates of Biogenic Volatile Organic Compounds (BVOCs) from Various Tree Species in Korea (I). JOURNAL OF KOREAN FORESTRY SOCIETY, 110(4), 543-553.

Cheng, X., Li, H., Zhang, Y., Li, Y., Zhang, W., Wang, X., Bi, F., Zhang, H., Gao, J., & Chai, F. (2018).

Atmospheric isoprene and monoterpenes in a typical urban area of Beijing: Pollution characterization, chemical reactivity and source identification. Journal of Environmental Sciences, 71, 150-167.

Choi, J., Choi, Y., Ahn, J., Park, J., Oh, J., Lee, G., Park, T., Park, G., Owen, J. S., & Lee, T. (2017).

Observation of secondary organic aerosol and new particle formation at a remote site in baengnyeong Island, Korea. Asian Journal of Atmospheric Environment, 11(4), 300-312.

Choi, Y., Kim, G., Park, S., Kim, E., & Kim, S. (2021). Prediction of natural volatile organic compounds emitted by bamboo groves in urban forests. Forests, 12(5), 543.

Curci, G., Beekmann, M., Vautard, R., Smiatek, G., Steinbrecher, R., Theloke, J., & Friedrich, R. (2009).

Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmospheric Environment, 43(7), 1444-1455.

Dai, H., Jing, S., Wang, H., Ma, Y., Li, L., Song, W., & Kan, H. (2017). VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Science of The Total Environment, 577, 73-83.

Datta, A., & Philip, L. (2012). Biodegradation of volatile organic compounds from paint industries.

Applied biochemistry and biotechnology, 167(3), 564-580.

Dechapanya, W., Eusebi, A., Kimura, Y., & Allen, D. T. (2003). Secondary organic aerosol formation from aromatic precursors. 1. Mechanisms for individual hydrocarbons. Environmental Science

& Technology, 37(16), 3662-3670.

Dehghani, M., Fazlzadeh, M., Sorooshian, A., Tabatabaee, H. R., Miri, M., Baghani, A. N., Delikhoon, M., Mahvi, A. H., & Rashidi, M. (2018). Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicology and environmental safety, 155, 133-143.

Delfino, R. J., Gong Jr, H., Linn, W. S., Pellizzari, E. D., & Hu, Y. (2003). Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environmental health perspectives, 111(4), 647-656.

Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X., Thornberry, T., Carroll, M.

A., Young, V., & Shepson, P. B. (2004). Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs. Science, 304(5671), 722-725.

Dörter, M., Odabasi, M., & Yenisoy-Karakaş, S. (2020). Source apportionment of biogenic and anthropogenic VOCs in Bolu plateau. Science of The Total Environment, 731, 139201.

Duan, J., Tan, J., Yang, L., Wu, S., & Hao, J. (2008). Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88(1), 25-35.

Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T., & Bayram, A. (2014). Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmospheric Environment, 98, 168-178.

Felzer, B. S., Cronin, T., Reilly, J. M., Melillo, J. M., & Wang, X. (2007). Impacts of ozone on trees and crops. Comptes Rendus Geoscience, 339(11-12), 784-798.

Filella, I., & Penuelas, J. (2006). Daily, weekly, and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona. Atmospheric Environment, 40(40), 7752-7769.

Friedrich, R., & Obermeier, A. (1999). Anthropogenic emissions of volatile organic compounds. In Reactive hydrocarbons in the atmosphere (pp. 1-39). Elsevier.

Fuentes, J. D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J., Ciccioli, P., Lamb, B., Geron, C., Gu, L., & Guenther, A. (2000). Biogenic hydrocarbons in the atmospheric boundary layer:

a review. Bulletin of the American Meteorological Society, 81(7), 1537-1575.

Gałęzowska, G., Chraniuk, M., & Wolska, L. (2016). In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review. TrAC Trends in Analytical Chemistry, 77, 14-22.

Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., SCHNITZLER, J. P., & Rinne, J. (2010). Determination

55

of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR‐MS analysis. Plant, cell & environment, 33(5), 781-792.

Grosjean, D., Williams, E. L., & Grosjean, E. (1993). Atmospheric chemistry of isoprene and of its carbonyl products. Environmental Science & Technology, 27(5), 830-840.

Gu, S., Guenther, A., & Faiola, C. (2021). Effects of anthropogenic and biogenic volatile organic compounds on Los Angeles air quality. Environmental Science & Technology, 55(18), 12191- 12201.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., & McKay, W. (1995). A global model of natural volatile organic compound emissions.

Journal of Geophysical Research: Atmospheres, 100(D5), 8873-8892.

Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T. a., Emmons, L., & Wang, X.

(2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.

1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471-1492.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6(11), 3181-3210.

Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., & Fall, R. (1993). Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. Journal of Geophysical Research: Atmospheres, 98(D7), 12609-12617.

Han, D., Wang, Z., Cheng, J., Wang, Q., Chen, X., & Wang, H. (2017). Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation. Environmental Science and Pollution Research, 24(22), 18619- 18629.

Harrison, D., Hunter, M., Lewis, A., Seakins, P., Nunes, T., & Pio, C. (2001). Isoprene and monoterpene emission from the coniferous species Abies Borisii-regis—implications for regional air chemistry in Greece. Atmospheric Environment, 35(27), 4687-4698.

Hellén, H., Tykkä, T., & Hakola, H. (2012). Importance of monoterpenes and isoprene in urban air in northern Europe. Atmospheric Environment, 59, 59-66.

Ho, K., Lee, S., Guo, H., & Tsai, W. (2004). Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Science of The Total Environment, 322(1- 3), 155-166.

Hong, Z., Li, M., Wang, H., Xu, L., Hong, Y., Chen, J., Chen, J., Zhang, H., Zhang, Y., & Wu, X. (2019).

Characteristics of atmospheric volatile organic compounds (VOCs) at a mountainous forest site and two urban sites in the southeast of China. Science of The Total Environment, 657, 1491- 1500.

Hoque, R. R., Khillare, P., Agarwal, T., Shridhar, V., & Balachandran, S. (2008). Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Science of The Total Environment, 392(1), 30-40.

Hsu, C.-Y., Chiang, H.-C., Shie, R.-H., Ku, C.-H., Lin, T.-Y., Chen, M.-J., Chen, N.-T., & Chen, Y.-C.

(2018). Ambient VOCs in residential areas near a large-scale petrochemical complex:

Spatiotemporal variation, source apportionment and health risk. Environmental Pollution, 240, 95-104.

Huang, B., Lei, C., Wei, C., & Zeng, G. (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies.

Environment international, 71, 118-138.

Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., & Cheng, N. (2019). VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China.

Science of The Total Environment, 650, 2624-2639.

Järvi, L., Hannuniemi, H., Hussein, T., Junninen, H., Aalto, P. P., Hillamo, R., Mäkelä, T., Keronen, P., Siivola, E., & Vesala, T. (2009). The urban measurement station SMEAR III: Continuous monitoring of air pollution and surface–atmosphere interactions in Helsinki, Finland.

56

Jeong, U., Kim, J., Lee, H., Jung, J., Kim, Y. J., Song, C. H., & Koo, J.-H. (2011). Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach. Journal of Environmental Monitoring, 13(7), 1905-1918.

Joutsensaari, J., Loivamäki, M., Vuorinen, T., Miettinen, P., Nerg, A.-M., Holopainen, J., & Laaksonen, A. (2005). Nanoparticle formation by ozonolysis of inducible plant volatiles. Atmospheric Chemistry and Physics, 5(6), 1489-1495.

Kaser, L., Karl, T., Guenther, A., Graus, M., Schnitzhofer, R., Turnipseed, A., Fischer, L., Harley, P., Madronich, M., & Gochis, D. (2013). Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results. Atmospheric Chemistry and Physics, 13(23), 11935-11947.

Kaufmann, M., Gusev, O., Grossmann, K., Martin‐Torres, F., Marsh, D., & Kutepov, A. (2003). Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere.

Journal of Geophysical Research: Atmospheres, 108(D9).

Kim, G., Park, S., & Kwak, D. (2020). Is it possible to predict the concentration of natural volatile organic compounds in forest atmosphere? International Journal of Environmental Research and Public Health, 17(21), 7875.

Kim, H., Lee, M., Kim, S., Guenther, A. B., Park, J., Cho, G., & Kim, H. S. (2015). Measurements of isoprene and monoterpenes at Mt. Taehwa and estimation of their emissions. Korean Journal of Agricultural and Forest Meteorology, 17(3), 217-226.

Kim, S.-J., Kwon, H.-O., Lee, M.-I., Seo, Y., & Choi, S.-D. (2019). Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environmental Science and Pollution Research, 26(6), 5831-5841.

Kim, S.-J., Lee, S.-J., Lee, H.-Y., Son, J.-M., Lim, H.-B., Kim, H.-W., Shin, H.-J., Lee, J. Y., & Choi, S.-D. (2022). Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk. Science of The Total Environment, 156344.

Kim, S.-Y., Jiang, X., Lee, M., Turnipseed, A., Guenther, A., Kim, J.-C., Lee, S.-J., & Kim, S. (2013).

Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmospheric Environment, 70, 447-453.

Kim, Y. P., Na, K., & Moon, K. (1998). Air pollutant levels at ulsan, an industrial area, Korea. Journal of Aerosol Science(29), S237-S238.

Klinger, L. F., Li, Q. J., Guenther, A., Greenberg, J., Baker, B., & Bai, J. H. (2002). Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research: Atmospheres, 107(D21), ACH 16-11-ACH 16-21.

Kumar, A., Singh, D., Anandam, K., Kumar, K., & Jain, V. K. (2017). Dynamic interaction of trace gases (VOCs, ozone, and NOx) in the rural atmosphere of sub-tropical India. Air Quality, Atmosphere & Health, 10(7), 885-896.

Laffineur, Q., Aubinet, M., Schoon, N., Amelynck, C., Müller, J.-F., Dewulf, J., Van Langenhove, H., Steppe, K., Šimpraga, M., & Heinesch, B. (2011). Isoprene and monoterpene emissions from a mixed temperate forest. Atmospheric Environment, 45(18), 3157-3168.

Latif, M. T., Abd Hamid, H. H., Ahamad, F., Khan, M. F., Nadzir, M. S. M., Othman, M., Sahani, M., Wahab, M. I. A., Mohamad, N., & Uning, R. (2019). BTEX compositions and its potential health impacts in Malaysia. Chemosphere, 237, 124451.

Lee, J., Cho, K. S., Jeon, Y., Kim, J. B., Lim, Y.-r., Lee, K., & Lee, I.-S. (2017). Characteristics and distribution of terpenes in South Korean forests. Journal of Ecology and Environment, 41(1), 1-10.

Lee, K.-H., Kim, H.-C., & Hu, C.-G. (2014). A Study on the estimation of BVOCs emission in Jeju Island (1). Journal of Environmental Science International, 23(12), 2057-2069.

Lee, S.-J., Lee, H.-Y., Kim, S.-J., Kang, H.-J., Kim, H., Seo, Y.-K., Shin, H.-J., Ghim, Y. S., Song, C.- K., & Choi, S.-D. (2023). Pollution characteristics of PM2. 5 during high concentration periods in summer and winter in Ulsan, the largest industrial city in South Korea. Atmospheric

57 Environment, 292, 119418.

Lerdau, M., Dilts, S. B., Westberg, H., Lamb, B. K., & Allwine, E. J. (1994). Monoterpene emission from ponderosa pine. Journal of Geophysical Research: Atmospheres, 99(D8), 16609-16615.

Lerdau, M., Litvak, M., Palmer, P., & Monson, R. (1997). Controls over monoterpene emissions from boreal forest conifers. Tree physiology, 17(8-9), 563-569.

Li, B., Ho, S. S. H., Gong, S., Ni, J., Li, H., Han, L., Yang, Y., Qi, Y., & Zhao, D. (2019).

Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. Atmospheric Chemistry and Physics, 19(1), 617-638.

Li, H., Riva, M., Rantala, P., Heikkinen, L., Daellenbach, K., Krechmer, J. E., Flaud, P.-M., Worsnop, D., Kulmala, M., & Villenave, E. (2020). Terpenes and their oxidation products in the French Landes forest: insights from Vocus PTR-TOF measurements. Atmospheric Chemistry and Physics, 20(4), 1941-1959.

Li, Z., Tao, L., Yang, Q., Chen, L., Qi, H., Ma, X., & Ben, H. (2023). Mechanism research on hydrogen production from catalytic pyrolysis of waste tire rubber. Fuel, 331, 125846.

Lim, S. K., Shin, H. S., Yoon, K. S., Kwack, S. J., Um, Y. M., Hyeon, J. H., Kwak, H. M., Kim, J. Y., Kim, T. H., & Kim, Y. J. (2014). Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX) in consumer products. Journal of Toxicology and Environmental Health, Part A, 77(22-24), 1502-1521.

Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., & Tang, D. (2008). Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment, 42(25), 6247-6260.

Loreto, F., & Schnitzler, J.-P. (2010). Abiotic stresses and induced BVOCs. Trends in plant science, 15(3), 154-166.

Lv, D., Lu, S., Tan, X., Shao, M., Xie, S., & Wang, L. (2021). Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong. Environmental Pollution, 274, 116589.

MIFAFF (2022) statistical yearbook of forestry 2022, Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). https://icis.me.go.kr/prtr/prtrInfo/yearSearch.do, Accessed 02 December 2022

Miller, L., Xu, X., Grgicak-Mannion, A., Brook, J., & Wheeler, A. (2012). Multi-season, multi-year concentrations and correlations amongst the BTEX group of VOCs in an urbanized industrial city. Atmospheric Environment, 61, 305-315.

Miller, L., Xu, X., Wheeler, A., Atari, D. O., Grgicak-Mannion, A., & Luginaah, I. (2011). Spatial variability and application of ratios between BTEX in two Canadian cities.

TheScientificWorldJOURNAL, 11, 2536-2549.

MOE (2020a) Pollutant release and transfer registers (PRTR), Ministry of Environment (MOE).

https://icis.me.go.kr/prtr/prtrInfo/yearSearch.do, Accessed 2 December 2022

MOE (2020b) Pollutant release and transfer registers (PRTR), Ministry of Environment (MOE).

https://icis.me.go.kr/prtr/prtrInfo/mttrSearch.do, Accessed 2 December 2022

MOE (2020c) Pollutant release and transfer registers (PRTR), Ministry of Environment (MOE).

https://icis.me.go.kr/prtr/prtrInfo/entrpsSearch.do, Accessed 2 December 2022

MOE (2021a) Monthly report of air quality, July 2021, Ministry of Environment (MOE).

https://www.airkorea.or.kr/jfile/readDownloadFile.do?fileId=17dc1cc28cc69&fileSeq=1, Accessed 2 December 2022

MOE (2021b) Monthly report of air quality, August 2021, Ministry of Environment (MOE).

https://www.airkorea.or.kr/jfile/readDownloadFile.do?fileId=18007c6a86c51&fileSeq=1, Accessed 2 December 2022

MOE (2021c) Monthly report of air quality, October 2021, Ministry of Environment (MOE).

https://www.airkorea.or.kr/jfile/readDownloadFile.do?fileId=18007c7429742&fileSeq=1, Accessed 2 December 2022

MOE (2021d) Monthly report of air quality, November 2021, Ministry of Environment (MOE).

https://www.airkorea.or.kr/jfile/readDownloadFile.do?fileId=17920402a7083&fileSeq=1, Accessed 2 December 2022

58

MOE (2022) Monthly report of air quality, Feburaury 2022, Ministry of Environment (MOE).

https://www.airkorea.or.kr/jfile/readDownloadFile.do?fileId=18007c6a80b39&fileSeq=1, Accessed 2 December 2022

Mohammadi, A., Ghassoun, Y., Löwner, M.-O., Behmanesh, M., Faraji, M., Nemati, S., Toolabi, A., Abdolahnejad, A., Panahi, H., & Heydari, H. (2020). Spatial analysis and risk assessment of urban BTEX compounds in Urmia, Iran. Chemosphere, 246, 125769.

Munir, S. (2017). Analysing temporal trends in the ratios of PM2. 5/PM10 in the UK. Aerosol and Air Quality Research, 17(1), 34-48.

Mutzel, A., Rodigast, M., Iinuma, Y., Böge, O., & Herrmann, H. (2016). Monoterpene SOA–

Contribution of first-generation oxidation products to formation and chemical composition.

Atmospheric Environment, 130, 136-144.

Na, K., Kim, Y. P., Moon, K.-C., Moon, I., & Fung, K. (2001). Concentrations of volatile organic compounds in an industrial area of Korea. Atmospheric Environment, 35(15), 2747-2756.

Nelson, P., & Quigley, S. (1983). The m, p-xylenes: ethylbenzene ratio. A technique for estimating hydrocarbon age in ambient atmospheres. Atmospheric Environment (1967), 17(3), 659-662.

Nishimura, H., Shimadera, H., Kondo, A., Akiyama, K., & Inoue, Y. (2015). Numerical analysis on biogenic emission sources contributing to urban ozone concentration in Osaka, Japan. Asian Journal of Atmospheric Environment, 9(4), 259-271.

Nordin, E., Eriksson, A., Roldin, P., Nilsson, P., Carlsson, J., Kajos, M., Hellén, H., Wittbom, C., Rissler, J., & Löndahl, J. (2013). Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmospheric Chemistry and Physics, 13(12), 6101-6116.

Pandis, S. N., Harley, R. A., Cass, G. R., & Seinfeld, J. H. (1992). Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics, 26(13), 2269-2282.

Panopoulou, A., Liakakou, E., Sauvage, S., Gros, V., Locoge, N., Stavroulas, I., Bonsang, B., Gerasopoulos, E., & Mihalopoulos, N. (2020). Yearlong measurements of monoterpenes and isoprene in a Mediterranean city (Athens): Natural vs anthropogenic origin. Atmospheric Environment, 243, 117803.

Park, J. H., Park, S. H., Lee, H. J., Kang, J. W., Lee, K. M., & Yeon, P. S. (2018). Study on NVOCs concentration characteristics by season, time and climatic factors: Focused on pinus densiflora forest in national center for forest therapy. Journal of People, Plants, and Environment, 21(5), 403-409.

Pereira, P. A. d. P., Santos, L. M. B., Sousa, E. T., & Andrade, J. B. d. (2004). Alcohol-and gasohol- fuels: a comparative chamber study of photochemical ozone formation. Journal of the Brazilian Chemical Society, 15, 646-651.

Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research:

Atmospheres, 103(D19), 25611-25629.

Ramirez-Gamboa, J., Paton-Walsh, C., Galbally, I., Simmons, J., Guerette, E.-A., Griffith, A. D., Chambers, S. D., & Williams, A. G. (2020). Seasonal variation of biogenic and anthropogenic VOCs in a semi-urban area near Sydney, Australia. Atmosphere, 12(1), 47.

Rich, S. (1964). Ozone damage to plants. Annual Review of Phytopathology, 2(1), 253-266.

Shao, P., An, J., Xin, J., Wu, F., Wang, J., Ji, D., & Wang, Y. (2016). Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmospheric Research, 176, 64-74.

Shen, L., Xiang, P., Liang, S., Chen, W., Wang, M., Lu, S., & Wang, Z. (2018). Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, Central China. Atmosphere, 9(8), 297.

Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821-1845.

Sillman, S., & He, D. (2002). Some theoretical results concerning O3‐NOx‐VOC chemistry and NOx‐

VOC indicators. Journal of Geophysical Research: Atmospheres, 107(D22), ACH 26-21-ACH

Dokumen terkait