• Tidak ada hasil yang ditemukan

Conclusion

Dalam dokumen Department of Nuclear Engineering (Halaman 94-101)

REFERENCE

[1] J.R. Davis, Nickel, Cobalt and their Alloys, ASM International Materials. 2000.

[2] Ballinger, R. F., Light Water Reactors: Materials of Construction and their Performance Characteristics that Impact Degradation, In: International conference on plants materials degradations: Application to the stress corrosion cracking of Ni base alloys. 2008.

[3] R.W. Staehle, The Theory of SCC in Alloys, II, NATO Science Committee, 1971, 279.

[4] A. Turnbull, Stress corrosion cracking: mechanisms, In K. H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, and Bernard Ilschner, editors, Encyclopedia of Materials: Science and Technology. 2001, vol. 37, pp. 8886–8891.

[5] M.E. Gallagher, S. Haq, A. Omer, A. Hodgson, Water monolayer and multilayer adsorption on Ni(111), Sur. Sci. 2007, vol. 601, pp. 268-273.

[6] L.Olle, M. Salmeron, A.M. Baro, The adsorption and decomposition of water on Ni(110) studied by electron energy loss spectroscopy, J. Vac. Sci. Technol. 1985, vol. A3, pp. 1866-1870.

[7] Z. Peide, F.H. Stott, R. P. M. Procter, W.A. Grant, The early stages of oxidation of ion-implanted nickel at high temperature, Oxidation of Metals. 1981, vol. 16, pp. 409-426.

[8] V. P. Deodeshmukh, S.K. Srivastava, J. Bai, Early-stage oxidation behavior of Co-rich high temperature alloys, Materials and Corrosion. 2013, pp. 772-776.

[9] C. Lanthony, et al., On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation, J. Chem. Phys. 2012, vol. 137.

[10] G.B. Hoflund, W.S. Epling, Oxidation study of a polycrystalline Ni/Cr alloy II, Chem. Mater. 1998, vol. 10, pp. 50-58.

[11] S.E. Ziemniak, M. Hanson. Corrosion behavior of NiCrFe alloy600 in high temperature, hydrogenated water, Corr. Sci. 2006, vol. 48, pp. 498-521.

[12] M. Juez-Lorenzo, V. Kolarik, W. Stamm, H. Fietzek, Oxidation of nickel-based alloys in dry and water vapour containing air, J. Mater, Sci. Tech. 2012, vol. 28, pp. 562-568.

[13] J. Kim et al., In-situ investigation of thermal aging effect on oxide formation in Ni-base alloy/low alloy steel dissimilar metal weld interfaces, 2014, Corr. Sci., vol. 86.

[14] J.Kim, K.J. Choi, C.H. Bahn, J.H. Kim, In-situ Raman spectroscopy analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld in high temperature water, J. Nucl. Matter.

2014, vol. 449, pp. 181-187.

[15] Z.P. Zhang, P. Li, Study on the trap site in Ni-Cr alloy by first principle approach, Vacuum. 2014, vol. 101, pp. 321-323.

[16] N.K. Das, T. Shoji, A density functional study of atomic oxygen and water molecule adsorption on Ni(111) and chromium-substituted Ni(111) surfaces, Appl. Surf. Sci. 2011, vol. 258, pp. 442-447.

[17] N.K. Das, I. Tirtom, T. Shoji, A multi-scale modeling study of a Ni-Cr(111) surface oxidation at different stress intensities, Mater. Chem. Phys. 2010, vol. 122, pp. 336-342.

[18] S.Garruchet, O.Politano, P. Arnoux, V. Vignal, Diffusion of oxygen in nickel : a variable charge molecular dynamics study. Solid state comm, 2010, vol. 150, pp. 439-442.

[19] C. Taylor, R.G. Kelly, M. Neurock, First principles calculations of the electrochemical reactions of water at an immersed Ni(111)/H2O interface, J. Electrochem. Soc. 2006, vol. 153, pp. 207-214.

[20] S. Yamagishi, S.J. Jenkins, D.A. King, First principles studies of chemisorbed O on Ni {111}, Surf.

Sci. 2003, vol. 543, pp. 12-18.

[21] H. Coriou, L. Grall, Y. Legall, and S. Vettier, Stress corrosion cracking of Inconel in high temperature water, In Third Colloquium of Metallurgy. 1960, vol. 39, pp. 161.

[22] B. Grimmel and W.H. Cullen Jr, U.S. plant experience with Alloy 600 cracking and boric acid corrosion of light-water reactor pressure vessel materials, Technical Report NUREG-1823, Division of Engineering Technology Office of Nuclear Regulatory Research, Washington, DC, 2005. 39.

[23] Soustelle, C. et al., PWSCC of alloy 600: a parametric study of surface film effect, In Proc. 9th Int.

Symp. On Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors.

1999.

[24] T. Terachi et al., Influence of Dissolved Hydrogen on Structure of Oxide Film on Alloy 600 Formed in Primary Water of Pressurized Water Reactors, Journal of Nuclear Science and Technology. 2003, vol. 40, pp. 506-516.

[25] Koji DOZAKI et al., Effects of Dissolved Hydrogen Content in PWR Primary Water on PWSCC Initiation Property, E-Journal of Advanced Maintenance. 2010, vol. 2, pp. 65-76.

[26] P. Laghoutaris, J. Chêne, C. Guerre, O. Raquet, M. Sennour, R. Molins, F. Vaillant, and P. Scott, Contribution to understanding of stress corrosion cracking of alloy 600 in PWR primary water, Energy Materials: Materials Science and Engineering for Energy Systems. 2008, vol. 3, pp. 119–

125.

[27] T. S. Gendron, S. J. Bushby, R. D. Cleland, and R. C. Newman, Oxidation embrittlement of alloy 600 in hydrogenated steam at 400 ◦C, In T. Magnin, editor, Corrosion-Deformation Interactions CDI ’96: (EFC 21). CDI ’96 in conjunction with Eurocorr ’96, Maney Publishing. 1997, pp. 77- 78.

[28] J. Panter, M. Foucault, J.-M. Cloué, P. Combrade, B. Viguier, and E. Andrieu, Surface layers on alloy 600 and 690 in primary water: possible influence on stress corrosion crack initiation, In NACE International Corrosion 2002. 2002, pp. 77-79.

[29] S. M. Bruemmer, Local deformation and IGSCC in LWR environments. Insights from crack-tip exams, In International conference on plant materials degradation - Application to the stress corrosion cracking of Ni-base alloys. EDF R&D centre of Les Renardières, Moret–Sur–Loing, France, 2008, pp. 78-79.

[30] J. Panter, B. Viguier, J.–M. Cloué, M. Foucault, P. Combrade, and E. Andrieu, Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600, Journal of Nuclear Materials, 2006, vol. 348, pp. 213–221.

[31] P. Fenter, X-ray Reflectivity as a Probe of Mineral-Fluid Interfaces: A User Guide, Rev. Mineral, Geochmistry. 2002, vol. 49, pp. 149-221.

[32] B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction. 2nd ed.; Addison Weseley Publishing Company, Inc., MA, 1978.

[33] N.K. Das, T. Shoji, A density functional study of atomic oxygen and water molecule adsorption on Ni(111) and chromium-substituted Ni(111) surfaces, Appl. Surf. Sci. 2011, vol. 258, pp. 442-447.

[34] Xiaolong Liu et al., Atomistic investigation on initiation of stress corrosion cracking of polycrystalline Ni60Cr30Fe10 alloys under high-temperature water by reactive molecular dynamics simulation, Computational Materials Science, 2021, vol. 187.

[35] Robinson, I. K., Crystal truncation rods and surface roughness, Physical Review B, 1986, vol. 33, pp. 3830-3836.

[36] Farraro, R. & Mclellan, R. B., Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum, Metallurgical Transactions A, vol. 8, pp. 1563-1565, doi:10.1007/bf02644859.

[37] Q.L. Tang, Z.X. Chen, Density functional slab model studies of water adsorption on flat and stepped Cu surfaces, Surface science, 601 (2007) 954.

[38] V. I. Avdeev, I. I. Zakharov, G. M Zhidomirov, N. M. Neshev, E. I. Proinov, Electronic structure of OH adsorbed on nickel, J. Struct. Chem, 1992, vol. 33, pp. 2.

[39] H. Tillborg, A. Nilsson, T. Wiell, N. Wassdahl, N. Martensson, J. Nordgren, Electronic structure of atomic oxygen adsorbed on Ni(100) and Cu(100) studied by soft X-ray emission and photoelectron spectroscopies, Phys. Rev. B, 1993, vol. 47, pp. 464-470.

[40] W.B. Zhang, B.Y. Tang, First-principles studies of the oxygen adsorption on unreconstructed and reconstructed Ni(110) surfaces, Surface science, 2009, vol. 603, pp. 1002-1009.

[41]

[42] F. Vaillant, J. D. Mithieux, O. de Bouvier, D. Vançon, G. Zacharie, Y. Brechet, and F. Louchet.

Influence of chromium content and microstructure on creep and PWSCC resistance of nickel base alloys. Nineth international conference on environmental degradation of materials in nuclear power systems – water reactors, pp. 251, 1999.

[43] F. Delabrouille, L. Legras, F. Vaillant, P. Scott, B. Viguier, and E. Andrieu., Effect of the chromium content and strain on the corrosion of nickel based alloys in primary water of pressurized water reactors, In Twelfth international conference on environmental degradation of materials in nuclear power systems – water reactors, 2005.

[44] T. Yonezawa and K. Onimura. Effect of chemical compositions and microstructure on the stress corrosion cracking resistance of nickel-based alloys in high-temperature water. In International conference on evaluation of materials performance in severe environments, 1989, pp. 235.

[45] T. M. Angeliu and G. S. Was. The effect of chromium, carbon, and yttrium on the oxidation of nickel-base alloys in high temperature water. Journal of The Electrochemical Society, 1993, vol.

140, pp. 1877.

[46] K. Yamanaka and J. Murayama. In Fourth international conference on environmental degradation of materials in nuclear power systems – water reactors, 1989, 42.

[47] A. Aguilar, J. L. Albarran, H. F. Lopez, and L. Martinez. Microstructural response on the cracking resistance of alloy 600. Materials Letters, 2007, 61(1), pp. 274–277.

[48] J. M. Sarver, J. R. Crum, and W. L. Mankins. Effect of carbide precipitation on the corrosion behavior of Inconel alloy 690. In NACE International Corrosion 1987, San Francisco, California, U.S.A., March 1987. 4

[49] K. Norring, J. Engström, and P. Norberg. Intergranular stress corrosion cracking in steam generator tubing. Testing of Alloy 690 and Alloy 600 tubes. In Third international conference on environmental degradation of materials in nuclear power systems – water reactors, pages 587–593, Warrendale, Pennsylvania, August 1988. TMS (The Minerals, Metals & Materials Society).

[50] D. Gómez–Briceño, F. Blázquez, and F. Hernández. Influence of product type on stress corrosion cracking of alloy 600. Corrosion, 1999, 55(3):248–258.

[51] K. Arioka, et al. Influence of carbide precipitation and rolling direction on intergranular stress corrosion cracking of austenitic stainless steels in hydrogenated high-temperature water. Corrosion, 2006, 62.7: 568-575.

[52] M. Sennour, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor. Journal of nuclear materials, 2010, 402.2-3: 147-156.

[53] R. B. Rebak and Z. Szklarska–Smialowska. The mechanism of stress corrosion cracking of alloy 600 in high temperature water. Corrosion Science, 1996, 38(6):971–988.

[54] Scott, P. M., and M. Le Calvar. Some possible mechanisms of intergranular stress corrosion cracking of Alloy 600 in PWR primary water, Proc. 6th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, 1993, 657‐665.

[55] Delabrouille, Frédéric. Caractérisation par MET de fissures de corrosion sous contrainte d'alliages à base de nickel: influence de la teneur en chrome et de la chimie du milieu. Diss. 2004.

[56] Panter, Jerome, et al. Surface layers on alloys 600 and 690 in PWR primary water: possible influence on stress corrosion cracking initiation. CORROSION 2002, 2002.

[57] P. Scott, P. Combrade, and F. Vaillant. Selective oxidation at grain boundaries and internal oxidation. In International conference on plant materials degradation - Application to the stress corrosion cracking of Ni-base alloys, EDF R&D centre of Les Renardières, Moret–Sur–Loing, France, 2008.

[58] Eichler, A. CO adsorption on Ni(111): A density functional theory study. Surf. Sci. 2002, 526, 332- 340

[59] Roques, J.; Anderson, A.B. Electrode potential-dependent stages in OHads formation on the Pt3Cr alloy (111) surface. J. Electrochem. Soc. 2004, 151, E340-E347

[60] Roques, J.; Anderson, A.B. Theory for the Potential Shift of OHads Formation on the Pt Skin on Pt3Cr(111)n Acid. J. Electrochemi. Soc. 2004, 151, E85-E91.

[61] V.Y. Gertsman, and Stephen M. Bruemmer. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Materialia 2001, 49(9), 1589-1598.

[62] B. Alexandreanu, B. Capell, G.S. was. Combined effect of special grain boundaries and grain boundary carbides on IGSCC of Ni–16Cr–9Fe–xC alloys. Materials Science and Engineering: A, 2001, 300.1-2: 94-104.

[63] B. Alexandreanu, G.S. was. The role of stress in the efficacy of coincident site lattice boundaries in improving creep and stress corrosion cracking. Scripta materialia, 2006, 54.6: 1047-1052.

[64] V. Thaveeprungsriporn, G.S. was. Grain boundary properties of Ni-16Cr-9Fe at 360° C. Scripta materialia, 1996, 35.1.

Acknowledgement

학부생으로 UNIST 에 입학하여 대학원 졸업까지 어느새 11 년이 지났습니다. 아직도 부족한 점이 많지만 주위 많은 분들의 도움이 있어 이렇게 감사의 글을 쓸 수 있게 된 것 같습니다. 먼저, 어떻게 보면 생소할 지도 모르는 원자력 공학이라는 분야를 접하게 되고 첫 발을 디딜 수 있게 해주신 지도 교수님, 김지현 교수님께 먼저 감사 인사를 드립니다. 교수님께서 해주신 많은 지원과 조언 덕분에 어려운 난관을 넘기고 무사히 학위 과정을 마칠 수 있게 된 것 같습니다. 감사합니다. 그리고 바쁘신 와중에도 제 학위 논문 심사에 참석해 주신, 방인철 교수님, 권순용 교수님, 반치범 교수님, 윤의성 교수님께도 감사드립니다. 심사에 참석하여 주신 의견들과 개인적으로 찾아 뵈었을 때 해주신 말씀들은 연구를 돌아보고 마무리 하는데 있어 많은 도움이 되었습니다.

제가 이때까지 자라오는 동안 항상 믿어주시고 격려해주신 부모님께도 감사의 말씀을 드립니다. 어릴 때부터 타지에서 생활을 하게 되어 자주 보지는 못하지만 그래도 어떤 선택을 하던 응원해주시고 조언 해주셔서 잘 마무리할 수 있게 된 것 같습니다. 타지에 있어 잘 챙겨주지는 못하지만 동생 광석 에게도 감사의 마음을 전합니다. 글재주가 없어 표현은 못하지만 사랑하고 감사합니다.

몇 년 동안 매일 같이 함께 지낸 연구실 식구들에게도 감사의 글을 남깁니다. 김종진 박사님, 신상훈 박사님과 최경준 박사님, 처음 연구실 생활을 할 때 해주신 많은 조언들 항상 잊지 않겠습니다. 태호 형과 승현이 형도 학부생 때부터 정말 많은 일을 함께 겪고 도움도 많이 받았는데 그만큼 돌려줄 수 있을지는 모르겠지만 노력해 볼게요 항상 응원합니다. 그리고 연구실 동기들과 후배들도 좋은 일, 안좋은 일 함께 겪으며 오랜 시간 같이 지내 왔는데 항상 해오던 것처럼 앞으로도 서로에게 좋은 영향을 주는 관계가 되었으면 좋겠습니다. 마지막으로, 언제 만나도 어색하지 않고 아무 생각없이 같이

Dalam dokumen Department of Nuclear Engineering (Halaman 94-101)

Dokumen terkait