• Tidak ada hasil yang ditemukan

CONCLUSION

Dalam dokumen ANAEROBIC DIGESTION OF (Halaman 116-124)

Macroalgal biomass is rich in biodegradable organics and contains little lignin, which is beneficial for its effcient bioconversion. Ulva is a macroalgal genus noted for causing harmful green ties worldwide. Given that macroalgal blooms have been more frequent and severe with global warming, biomethanation of Ulva biomass via AD appears to be environmentally and economically attractive. Despite its high potential as AD feedstock, the high sulfur content of Ulva can deteriorate methanogenesis and thus negatively affect process stability during long-term operation. Furthermore, several properties of Ulva, including the rigid cell structure, substrate seasonality, and high nitrogen, can also reduce AD efficiency. In my PhD study, biomethanation of sulfur-rich Ulva biomass was investigated focusing on methanogenic efficiency and stability, with sulfide control. In Study 1, mono-digestion of Ulva biomass was examined with different reactor configurations of batch, repeated batch, and continuous operation with CSTR and SBR to minimize the underlying challenges. The operational approaches demonstrated the high biomethanation potential of Ulva biomass and the signficance of sulfide control during Ulva AD for long-term continuous operation. Then, Study 2 investigated co-digestion of Ulva biomass with cheese whey at varying substrate mixing ratios in continuous mode. The results proved that co-digestion of Ulva biomass with whey was beneficial for Ulva biomethanation, with higher methane yield and lower H2S production than those in Ulva mono-digestion. Based on these observations, further enhancement of methane production with sulfide control was investigated in Study 3 by adding conductive magnetite in the co-digestion of Ulva and cheese whey. In the presence of magnetite, the H2S production was significantly reduced (<1 ppmv at 20 mM Fe) along with formation of extracellular S0, which was not observed in the absence of magnetite. It was experimentally proposed that magnetite promoted a novel electric-syntropy between exoelectrogenic ASOBs and electrotrophic methanogens, possibly via DIET, thus inducing anaerobic sulfide oxidation to S0. In conclusion, magnetite-assisted biomethanation of sulfur-rich Ulva biomass can effectively control sulfidogenesis and thus improve process efficiency and stability. This study contributes to information and operational strategy relating to the biomethanation of sulfur-rich feedstocks such as Ulva, with novel possibilities for an in situ H2S control method via DIET.

98

REFERENCES

Aghababaie, M., Farhadian, M., Jeihanipour, A., Biria, D. 2015. Effective factors on the performance of microbial fuel cells in wastewater treatment – a review. Environ. Technol., Rev. 4, 71-89.

Ahring, B.K. 2003. Biomethanation II. Springer, New York, USA.

Akarsubasi, A.T., Ince, O., Kirdar, B., Oz, N.A., Orhon, D., Curtis, T.P., Head, I.M., Ince, B.K. 2005. Effect of wastewater composition on archaeal population diversity. Water Res., 39, 1576-1584.

Allegue, L.B., Hinge, J., Allé, K. 2012. Biogas and bio-syngas upgrading. Danish Technological Institute, Aarhus.

Allen, E., Browne, J., Hynes, S., Murphy, J.D. 2013. The potential of algae blooms to produce renewable gaseous fuel.

Waste Manage., 33, 2425-2433.

Allen, E., Wall, D.M., Herrmann, C., Murphy, J.D. 2014. Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel. Bioresour. Technol., 170, 436-444.

Amen, T.W.M., Eljamal, O., Khalil, A.M.E., Matsunaga, N. 2018. Evaluation of sulfate-containing sludge stabilization and the alleviation of methanogenesis inhibitation at mesophilic temperature. J. Water Process Eng., 25, 212- 221.

APHA-AWWA-WEF. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington, D.C.

Aulenta, F., Rossetti, S., Amalfitano, S., Majone, M., Tandoi, V. 2013. Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes.

ChemSusChem, 6, 433-436.

Baek, G., Jung, H., Kim, J., Lee, C. 2017. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent–magnetic separation and recycling of magnetite. Bioresour. Technol., 241, 830-840.

Baek, G., Kim, J., Kim, J., Lee, C. 2018. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies, 11, 107.

Baek, G., Kim, J., Lee, C. 2016. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – Enhancement in process performance and stability. Bioresour. Technol., 222, 344- 354.

Barua, S., Dhar, B.R. 2017. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol., 244, 698-707.

Beatty, J.T., Overmann, J., Lince, M.T., Manske, A.K., Lang, A.S., Blankenship, R.E., Van Dover, C.L., Martinson, T.A., Plumley, F.G. 2005. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. PNAS, 102, 9306-9310.

Ben-Dov, E., Brenner, A., Kushmaro, A. 2007. Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA Genes. Microb. Ecol., 54, 439-451.

Blázquez, E., Gabriel, D., Baeza, J.A., Guisasola, A. 2017. Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode. Water Res., 123, 301-310.

Blenkinsopp, S.A., Lock, M.A. 1990. The measurement of electron transport system activity in river biofilms. Water Res., 24, 441-445.

Boone, D.R., Castenholz, R.W. 2001. Bergey's Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria. 2nd ed, (Ed.) G.M. Garrity, Vol. 1, Springer. New York.

Briand, X., Morand, P. 1997. Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation. Journal of Applied Phycology, 9(6), 511-524.

Brown, M., Hodgkinson, W., Hurd, C. 1999. Spatial and temporal variations in the copper and zinc concentrations of two green seaweeds from Otago Harbour, New Zealand. Mar. Environ. Res., 47, 175-184.

Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C., Jensen, P.D.

2011. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour.

Technol., 102, 2595-2604.

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7, 335-336.

Chen, J.L., Ortiz, R., Steele, T.W.J., Stuckey, D.C. 2014a. Toxicants inhibiting anaerobic digestion: A review.

Biotechnol. Adv., 32, 1523-1534.

Chen, S., Niu, L., Zhang, Y. 2010. Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated

99

from sludge treating brewery wastewater. Int. J. Syst. Evol. Microbiol., 60, 2735-2738.

Chen, S., Rotaru, A.E., Liu, F., Philips, J., Woodard, T.L., Nevin, K.P., Lovley, D.R. 2014b. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour. Technol., 173, 82-86.

Chen, S., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Liu, F., Fan, W., Nevin, K.P., Lovley, D.R. 2014c. Promoting interspecies electron transfer with biochar. Sci. Rep., 4, 5019.

Chen, Y., Cheng, J.J., Creamer, K.S. 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol., 99, 4044-4064.

Christoph Griesbeck, G.H., Michaeal Schutz. 2000. Biological Sulfide-Oxidation: Sulfide-Quinone Reductase (SQR), the Primary Reaction. in: Recent Research Developments in Microbiology, (Ed.) S.G. Pandalai, Vol. 4, Research Signpost. Trivadrum, India, pp. 179-203.

Colleran, E., Finnegan, S., Lens, P. 1995. Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek, 67, 29-46.

Cordas, C.M., Guerra, L.T., Xavier, C., Moura, J.J.G. 2008. Electroactive biofilms of sulphate reducing bacteria.

Electrochim. Acta, 54, 29-34.

Costa, J., Gonçalves, P., Nobre, A., Alves, M. 2012a. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour. Technol., 114, 320-326.

de Bok, F.A.M., Plugge, C.M., Stams, A.J.M. 2004. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res., 38, 1368-1375.

de Campos Rodrigues, T., Rosenbaum, M.A. 2014. Microbial electroreduction: Screening for new cathodic biocatalysts.

ChemElectroChem, 1, 1916-1922.

Dubé, C.D., Guiot, S.R. 2015. Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review. in: Biogas Science and Technology, (Eds.) G.M. Guebitz, A. Bauer, G. Bochmann, A. Gronauer, S. Weiss, Springer International Publishing. Cham, pp. 101-115.

Dubinina, G., Grabovich, M., Leshcheva, N., Rainey, F.A., Gavrish, E. 2011. Spirochaetaperfilievii sp. nov., an oxygen- tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int. J.

Syst. Evol. Microbiol., 61, 110-117.

Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.

Ekstrom, E.B., Morel, F.M.M. 2008. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria.

Environ. Sci. Technol., 42, 93-99.

Escoriza, M.F., VanBriesen, J.M., Stewart, S., Maier, J., Treado, P.J. 2006. Raman spectroscopy and chemical imaging for quantification of filtered waterborne bacteria. J. Microbiol. Methods, 66, 63-72.

Eunhee Bae, J.K., Jaehyun Ahn. 2007. Studies on the geographical distribution of Ulva L. (Ulvaceae, Chlorophyta) in Korea, (Ed.) N.I.o.B. Resources.

Feng, Q., Song, Y.C., Yoo, K., Kuppanan, N., Subudhi, S., Lal, B. 2017. Bioelectrochemical enhancement of direct interspecies electron transfer in upflow anaerobic reactor with effluent recirculation for acidic distillery wastewater. Bioresour. Technol., 241, 171-180.

Frigaard, N.U. 2016. Biotechnology of Anoxygenic Phototrophic Bacteria. in: Anaerobes in Biotechnology, (Eds.) R.

Hatti-Kaul, G. Mamo, B. Mattiasson, Springer International Publishing. Cham, pp. 139-154.

Gao, G., Clare, A.S., Rose, C., Caldwell, G.S. 2016. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Mar. Pollut. Bull., 114, 439-447.

Gao, S., Chen, X., Yi, Q., Wang, G., Pan, G., Lin, A., Peng, G. 2010. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLOS ONE, 5, e8571.

Gardner, L.R., Stewart, P.S. 2002. Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J. Ind.

Microbiol. Biotechnol., 29, 354-360.

Glibert, P.M. 2013. Harmful algal blooms in Asia: An insidious and escalating water pollution phenomenon with effects on ecological and human health. ANE, 21, 1-17.

Guo, X.J., Lu, Z.Y., Wang, P., Li, H., Huang, Z.Z., Lin, K.F., Liu, Y.D. 2015. Diversity and degradation mechanism of an anaerobic bacterial community treating phenolic wastewater with sulfate as an electron acceptor. Environ.

Sci. Pollut. Res., 22, 16121-16132.

Gupta, R.S. 2004. The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes.

Crit. Rev. Microbiol., 30, 123-143.

Gutierrez, O., Park, D., Sharma, K.R., Yuan, Z. 2009. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Res., 43, 2549-2557.

Hein, R., Stoddard, S.F., Schmidt, T.M., Roller, B.R.K., Smith, B.J. 2014. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res., 43, D593-D598.

Hu, J., Zeng, C., Liu, G., Lu, Y., Zhang, R., Luo, H. 2019. Enhanced sulfate reduction accompanied with electrically- conductive pili production in graphene oxide modified biocathodes. Bioresour. Technol., 282, 425-432.

100

Imhoff, J.F. 2014. The Family Chlorobiaceae. in: The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, (Eds.) E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, F. Thompson, Springer Berlin Heidelberg. Berlin, Heidelberg, pp. 501-514.

Irgens, R.L. 1977. Meniscus, a new genus of aerotolerant, gas-vacuolated bacteria. Int. J. Syst. Evolut. Microbiol., 27, 38-43.

Jabari, L., Gannoun, H., Cayol, J.L., Hedi, A., Sakamoto, M., Falsen, E., Ohkuma, M., Hamdi, M., Fauque, G., Ollivier, B. 2012a. Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters. Int. J. Syst. Evol. Microbiol., 62, 2522- 2527.

Jin, Z., Zhao, Z., Zhang, Y. 2019. Potential of direct interspecies electron transfer in synergetic enhancement of methanogenesis and sulfate removal in an up-flow anaerobic sludge blanket reactor with magnetite. Sci. Tot.

Environ., 677, 299-306.

Jing, Y., Wan, J., Angelidaki, I., Zhang, S., Luo, G. 2017. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Res., 108, 212-221.

Jing, Z., Hu, Y., Niu, Q., Liu, Y., Li, Y.-Y., Wang, X.C. 2013. UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresour. Technol., 137, 349-357.

Jung, H., Baek, G., Kim, J., Shin, S.G., Lee, C. 2016a. Mild-temperature thermochemical pretreatment of green macroalgal biomass: Effects on solubilization, methanation, and microbial community structure. Bioresour.

Technol., 199, 326-335.

Jung, H., Kim, J., Lee, C. 2016b. Continuous anaerobic co-digestion of Ulva biomass and cheese whey at varying substrate mixing ratios: Different responses in two reactors with different operating regimes. Bioresour.

Technol., 221, 366-374.

Kato, S., Hashimoto, K., Watanabe, K. 2012. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron‐oxide minerals. Environ. Microbiol., 14, 1646-1654.

Kim, J., Jung, H., Lee, C. 2014a. Shifts in bacterial and archaeal community structures during the batch biomethanation of Ulva biomass under mesophilic conditions. Bioresour. Technol., 169, 502-509.

Kim, J., Kim, W., Lee, C. 2013a. Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters. J. Environ. Sci., 25, 1-9.

Kim, J., Lee, C. 2014. Rapid fingerprinting of methanogenic communities by high-resolution melting analysis.

Bioresour. Technol., 174, 321-327.

Kim, J., Lee, C. 2016. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function. Water Res., 89, 241-251.

Kim, J., Lee, C. 2015a. Response of a continuous biomethanation process to transient organic shock loads under controlled and uncontrolled pH conditions. Water Res., 73, 68-77.

Kim, J., Lee, S., Lee, C. 2013b. Comparative study of changes in reaction profile and microbial community structure in two anaerobic repeated-batch reactors started up with different seed sludges. Bioresour. Technol., 129, 495-505.

Kim, M.S., Lee, K.M., Kim, H.E., Lee, H.J., Lee, C., Lee, C. 2016. Disintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterability. Environ. Sci. Technol., 50, 7106-7115.

Kitahara, M., Sakamoto, M., Tsuchida, S., Kawasumi, K., Amao, H., Benno, Y., Ohkuma, M. 2013.

Parabacteroideschinchillae sp. nov., isolated from chinchilla (Chincilla lanigera) faeces. Int. J. Syst. Evol.

Microbiol., 63, 3470-3474.

Kobayashi, H.A., Stenstrom, M., Mah, R.A. 1983. Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Res., 17, 579-587.

Kostanjevecki, V., Brigé, A., Meyer, T.E., Cusanovich, M.A., Guisez, Y., van Beeumen, J. 2000. A membrane-bound flavocytochrome c-sulfide dehydrogenase from the purple phototrophic sulfur bacterium Ectothiorhodospira vacuolata. J. Bacteriol., 182, 3097-3103.

Koster, I., Rinzema, A., De Vegt, A., Lettinga, G. 1986. Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res., 20, 1561-1567.

Kostka, J.E., Luther, G.W. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim.

Cosmochim. Acta, 58, 1701-1710.

Krayzelova, L., Bartacek, J., Kolesarova, N., Jenicek, P. 2014. Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour. Technol., 172, 297-302.

Krieg, N.R., Staley, J.T., Brown, D.R., Hedlund, B.P., Paster, B.J., Ward, N., Ludwig, W., Whitman, W.B. 2011.

Bergey's Manual of Systematic Bacteriology Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. 2nd ed, Vol. 4, Springer. New York.

Lahaye, M., Robic, A. 2007. Structure and functional properties of ulvan, a polysaccharide from green seaweeds.

101 Biomacromolecules, 8, 1765-1774.

Lee, C., Kim, J., Shin, S.G., O'Flaherty, V., Hwang, S. 2010. Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Appl. Microbiol.

Biotechnol., 87, 1963-1973.

Lee, C., Lee, S., Cho, K.J., Hwang, S. 2011. Mycelial cultivation of Phellinus linteus using cheese-processing waste and optimization of bioconversion conditions. Biodegradation, 22, 103-110.

Lee, J.Y., Lee, S.H., Park, H.D. 2016. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresour. Technol., 205, 205- 212.

Lee, S.Y., Chang, J.H., Lee, S.B. 2014. Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa. Biotechnol. Bioproc. E., 19, 1022-1033.

Lens, P.N.L., Visser, A., Janssen, A.J.H., Pol, L.W.H., Lettinga, G. 1998. Biotechnological treatment of sulfate-rich wastewaters. Crit. Rev. Environ. Sci. Technol., 28, 41-88.

Li, H., Chang, J., Liu, P., Fu, L., Ding, D., Lu, Y. 2015. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ. Microbio., 17, 1533-1547.

Li, X.-k., Ma, K.-l., Meng, L.-w., Zhang, J., Wang, K. 2014. Performance and microbial community profiles in an anaerobic reactor treating with simulated PTA wastewater: From mesophilic to thermophilic temperature.

Water Res., 61, 57-66.

Li, Y., Zhang, Y., Yang, Y., Quan, X., Zhao, Z. 2017. Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel. Bioresour. Technol., 234, 303- 309.

Lin, H., Williams, N., King, A., Hu, B. 2016. Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion. Chem. Eng. J., 297, 180-192.

Lin, R., Cheng, J., Ding, L., Murphy, J.D. 2018. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chem. Eng. J., 350, 681-691.

Liu, F., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P., Lovley, D.R. 2015. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol., 17, 648- 655.

Liu, F., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P., Lovley, D.R. 2012a. Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci., 5, 8982-8989.

Liu, Y., Gu, M., Yin, Q., Wu, G. 2019. Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems. Bioresour. Technol., 288, 121546.

Liu, Y., Liu, Q.S. 2006. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors.

Biotechnology Adv., 24, 115-127.

Liu, Z., Frigaard, N.U., Vogl, K., Iino, T., Ohkuma, M., Overmann, J., Bryant, D. 2012b. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi.

Front. Microbiol., 3.

Lovley, D.R. 2017a. Happy together: microbial communities that hook up to swap electrons. ISME J., 11, 327-336.

Lovley, D.R. 2011. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy- related contamination. Energy Environ. Sci., 4, 4896-4906.

Lovley, D.R. 2017b. Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annu. Rev. Microbiol. 71, 643-664.

Maillacheruvu, K.Y., Parkin, G.F. 1996. Kinetics of growth, substrate utilization and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic systems. Water Environ. Res., 68, 1099-1106.

Margaritis, A., Kilonzo, P. 2005. Production of ethanol using immobilised cell bioreactor systems. in: Applications of Cell Immobilisation Biotechnology, (Eds.) V. Nedović, R. Willaert, Vol. 8B, Springer Netherlands, pp. 375-405.

Marschall, E., Jogler, M., Henßge, U., Overmann, J. 2010. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ. Microbiol., 12, 1348-1362.

McCune, B., Grace, J.B., Urban, D.L. 2002. Analysis of ecological communities. MjM software design Gleneden Beach, OR.

Morita, M., Malvankar, N.S., Franks, A.E., Summers, Z.M., Giloteaux, L., Rotaru, A.E., Rotaru, C., Lovley, D.R. 2011.

Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio, 2(4), e00159-11.

Murugananthan, M., Raju, G.B., Prabhakar, S. 2004. Removal of sulfide, sulfate and sulfite ions by electro coagulation.

J. Hazard. Mat., 109, 37-44.

Muyzer, G., Stams, A.J. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol., 6, 441-454.

Nishiyama, T., Ueki, A., Kaku, N., Watanabe, K., Ueki, K. 2009. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int. J. Syst. Evol. Microbiol., 59, 1901-

102 1907.

O'Flaherty, V., Lens, P., Leahy, B., Colleran, E. 1998. Long-term competition between sulphate-reducing and methane- producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Res., 32, 815-825.

Omil, F., Bakker, C.D., Pol, L.W.H., Lettinga, G. 1997. Effect of pH and low temperature shocks on the competition between sulphate reducing bacteria and methane producing bacteria in UASB reactors. Environ. Technol., 18, 255-264.

Parkin, G.F., Lynch, N.A., Kuo, W.C., Van Keuren, E.L., Bhattacharya, S.K. 1990. Interaction between sulfate reducers and methanogens fed acetate and propionate. Res. J. Water Pollut. Cont. Fed., 780-788.

Persson, M., Center, S.G. 2007. Biogas upgrading and utilization as vehicle fuel. The Future of Biogas in Europe III, 59.

Petersson, A., Wellinger, A. 2009. Biogas upgrading technologies–developments and innovations. IEA bioenergy, 20, 1- 19.

Peu, P., Sassi, J.F., Girault, R., Picard, S., Saint-Cast, P., Béline, F., Dabert, P. 2011a. Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour.

Technol., 102, 10794-10802.

Poulton, S.W., Krom, M.D., Raiswell, R. 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta, 68, 3703-3715.

Rabus, R., Hansen, T.A., Widdel, F. 2006. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. in: The Prokaryotes:

Volume 2: Ecophysiology and Biochemistry, (Eds.) M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E.

Stackebrandt, Springer New York. New York, NY, pp. 659-768.

Renewable-Energy-Network. 2013. Renewables 2013 Global Status Report. Renewable Energy Network.

Rinzema, A., Lettinga, G. 1988. Anaerobic Treatment of Sulfate Containing Wastewater. in: Biotreatment Systems, pp.

65-110.

Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584.

Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., Lovley, D.R. 2014a. Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol., 80, 4599.

Rotaru, A.E., Shrestha, P.M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K.P., Lovley, D.R. 2014b. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci., 7, 408-415.

Sahu, R.C., Patel, R., Ray, B.C. 2011. Removal of hydrogen sulfide using red mud at ambient conditions. Fuel Process.

Technol., 92, 1587-1592.

Sanderson, S.S., Stewart, P.S. 1997. Evidence of bacterial adaptation to monochloramine in Pseudomonas aeruginosa biofilms and evaluation of biocide action model. Biotechnol, Bioeng., 56, 201-209.

Sawayama, S., Tsukahara, K., Yagishita, T., Hanada, S. 2001. Characterization of lighted upflow anaerobic sludge blanket (LUASB) method under sulfate-rich conditions. J. Biosci. Bioeng., 91, 195-201.

Schattauer, A., Abdoun, E., Weiland, P., Plöchl, M., Heiermann, M. 2011. Abundance of trace elements in demonstration biogas plants. Biosyst. Eng., 108, 57-65.

Shao, M.-F., Zhang, T., Fang, H.H.-P. 2010. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl. Microbiol. Biotechnol., 88, 1027-1042.

Smithers, G.W. 2008. Whey and whey proteins—From ‘gutter-to-gold’. Int. Dairy J., 18, 695-704.

Sorokin, D.Y., Foti, M., Tindall, B.J., Muyzer, G. 2007. Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles, 11, 363-370.

Speece, R.E. 1996. Anaerobic biotechnology for industrial wastewaters. in: Anaerobic biotechnology for industrial wastewaters.

Stefanie, J.W.H.O.E., Visser, A., Hulshoff Pol, L.W., Stams, A.J.M. 1994. Sulfate reduction in methanogenic bioreactors.

FEMS Microbiol. Rev., 15, 119-136.

Storck, T., Virdis, B., Batstone, D.J. 2016. Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME J., 10, 621-631.

Surkov, A.V., Dubinina, G.A., Lysenko, A.M., Glöckner, F.O., Kuever, J. 2001. Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from 'Thiodendron 'sulfur mats in different saline environments. Int. J. Syst. Evol. Microbiol. 51, 327-337.

Sydow, A., Krieg, T., Mayer, F., Schrader, J., Holtmann, D. 2014. Electroactive bacteria—molecular mechanisms and genetic tools. Appl. Microbiol. Biotechnol., 98, 8481-8495.

Tan, H.-Q., Li, T.T., Zhu, C., Zhang, X.Q., Wu, M., Zhu, X.-F. 2012. Parabacteroides chartae sp. nov., an obligately

103

anaerobic species from wastewater of a paper mill. Int. J. Syst. Evol. Microbiol., 62, 2613-2617.

Tang, Y., Deng, D., Zhou, L., Jiang, Y., Ma, Y., Tian, G., Liu, Y. 2017. Analysis of electricity generation and community of electroactive biofilms enriched from various wastewater treatment stages. J. Electroanal. Chem. 803, 72-80.

Thamdrup, B., Fossing, H., Jørgensen, B.B. 1994. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark. Geochim. Cosmochim. Acta, 58, 5115-5129.

Thauer, R.K., Jungermann, K., Decker, K. 1977a. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol.

Rev., 41, 100.

Vanysek, P. 2002. Electrochemical Series. Handbook of Chemistry and Physics, 8-21-8-31.

Visser, A., Beeksma, I., van der Zee, F., Stams, A.J.M., Lettinga, G. 1993. Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl. Microbiol. Biotechnol., 40, 549-556.

Vivekanand, V., Eijsink, V.H., Horn, S. 2012. Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J. Appl. Phycol., 24, 1295-1301.

Wang, X., Li, L., Bao, X., Zhao, L. 2009. Economic cost of an algae bloom cleanup in China's 2008 Olympic sailing venue. Eos, Trans. AGU., 90, 238-239.

Wang, Z., Yin, Q., Gu, M., He, K., Wu, G. 2018. Enhanced azo dye Reactive Red 2 degradation in anaerobic reactors by dosing conductive material of ferroferric oxide. J. Hazard. Mat., 357, 226-234.

Wellinger, A., Lindberg, A. 2001. Biogas upgrading and utilisation-IEA Bioenergy, Task 24-Energy from biological conversion of organic waste.

Widdel, F. 1988. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. Biology of Anaerobic Microorganisms., 469-585.

Widdel, F., Pfennig, N. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch.

Microbiol., 129, 395-400.

Wilderer, P.A., Irvine, R.L., Goronszy, M.C. 2001. Sequencing Batch Reactor Technology. IWA Publishing, London, UK.

Wu, J., Liu, Q., Feng, B., Kong, Z., Jiang, B., Li, Y.Y. 2019. Temperature effects on the methanogenesis enhancement and sulfidogenesis suppression in the UASB treatment of sulfate-rich methanol wastewater. Int. Biodeter.

Biodegr., 142, 182-190.

Ye, N.H., Zhang, X.W., Mao, Y.Z., Liang, C.W., Xu, D., Zou, J., Zhuang, Z.M., Wang, Q.Y. 2011. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol. Res., 26, 477-485.

Yin, Q., Yang, S., Wang, Z., Xing, L., Wu, G. 2018. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide. Chem. Eng. J., 333, 216- 225.

Yongsiri, C., Hvitved-Jacobsen, T., Vollertsen, J., Tanaka, N. 2003. Introducing the emission process of hydrogen sulfide to a sewer process model (WATS). Water Sci. Techno., 47, 85-92.

Yu, Y., Lee, C., Kim, J., Hwang, S. 2005. Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction. Biotechnol. Bioeng., 89, 670-679.

Zaiat, M., Rodrigues, J.A.D., Ratusznei, S.M., de Camargo, E.F.M., Borzani, W. 2001. Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Appl. Microbiol. Biotechnol., 55, 29-35.

Zandvoort, M.H., van Hullebusch, E.D., Gieteling, J., Lens, P.N.L. 2006. Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencies. Enzyme Microb. Technol., 39, 337-346.

Zhang, J., Zhang, Y., Chang, J., Quan, X., Li, Q. 2013. Biological sulfate reduction in the acidogenic phase of anaerobic digestion under dissimilatory Fe (III) – Reducing conditions. Water Res., 47, 2033-2040.

Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., Verstraete, W. 2008. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res., 42, 1-12.

Zhang, Y., Zhang, Z., Suzuki, K., Maekawa, T. 2003. Uptake and mass balance of trace metals for methane producing bacteria. Biomass Bioenerg., 25, 427-433.

Zhao, M.-X., Ruan, W.Q. 2013. Biogas performance from co-digestion of Taihu algae and kitchen wastes. Energy Convers. Manag., 75, 21-24.

Zhong, W., Zhang, Z., Luo, Y., Qiao, W., Xiao, M., Zhang, M. 2012. Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresour. Technol., 114, 281-286.

Dalam dokumen ANAEROBIC DIGESTION OF (Halaman 116-124)