33
and the thickness change was measured at various soaking time. According to report by Kovalenko and co-workers, little-to-no interaction between polymeric binder and electrolyte is required to achive the stable mechanical properties in electrolyte. In accord with that report, our PAA-BP binder showed little swelling (101.8%) in DEC solution, whereas the conventional PAA films displayed relatively larger swelling (104.9%), suggesting good mechanical stability in electrolyte solution.68, 75
Figure 1 BP elect (c) bare (blue) ba
16. (a) Cycle trode under U
PAA-BP ele are PAA-BP
e performanc UV-irradiati ectrode at va P electrode at
ce of (circle) on. (b, c) Vo arious cycle t different cu
34
bare PAA-B oltage profilnumbers. (d urrent rates.
BP electrode es of (b) cro d) Rate perfo
and (triangle oss-linked PA ormance of (r
e) cross-link AA-BP elect red) cross-lin
ked PAA- trode and
nked and
Figure delithiat after 60t electrod binder i mechani
17. (a) Ex s tion, and afte
th cycles, ind e after 60th in electrolyte ical propertie
itu measurem er 60th cycles dicating disin cycles was m e solution. C es upon wett
ment for thic s. Inset imag ntegration of
measured w Change in P ting in the ap
35
ckness trace ge shows the f bare PAA-B with the filmPAA-BP bin protic electro
e of the PAA e (left) bare a BP electrode residue. (b) nder is lowe lyte solution
A-BP electro and (right) c e. The thickn Swelling of er than PAA n.
odes at full l cross-linked e
ness of bare f PAA and A, resulting
ithiation, electrode PAA-BP PAA-BP in stable
Figure study.
18. (a) XRDD pattern, (bb) TEM ima
36
ages of carboon-coated sillicon active--material useed in the
37 VI. REFERENCES
1. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries.
Nature 2001, 414, 359-367.
2. Dunn, B.; Kamath, H.; Tarascon, J. M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935.
3. Yoshino, A., The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Edit. 2012, 51, 5798-5800.
4. Megahed, S.; Scrosati, B., Lithium-Ion Rechargeable Batteries. J. Power Sources. 1994, 51, 79-104.
5. Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G., Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977-980.
6. Park, J.-K., Principles and Applications of Lithium Secondary Batteries. WIELY 2012 7. Owen, J. R., Rechargeable lithium batteries. Chem. Soc. Rev. 1997, 26, 259-267.
8. Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R., Beyond Intercalation-Based Li- Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater. 2010, 22, 170-192.
9. Scrosati, B.; Hassoun, J.; Sun, Y. K., Lithium-ion batteries. A look into the future.
Energy Environ. Sci. 2011, 4, 3287-3295.
10. Broussely, M.; Archdale, G., Li-ion batteries and portable power source prospects for the next 5-10 years. J. Power Sources 2004, 136, 386-394.
11. Wakihara, M., Recent developments in lithium ion batteries. Mat. Sci. Eng. R. 2001, 33, 109-134.
12. Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes.
Energy Environ. Sci. 2011, 4, 56-72.
13. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P., Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725-763.
14. Odani, A.; Nimberger, A.; Markovsky, B.; Sominski, E.; Levi, E.; Kumar, V. G.; Motiei, A.; Gedanken, A.; Dan, P.; Aurbach, D., Development and testing of nanomaterials for rechargeable lithium batteries. J. Power Sources 2003, 119, 517-521.
15. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.
2005, 4, 366-377.
38
16. Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
17. Wang, Y.; Cao, G. Z., Developments in nanostructured cathode materials for high- performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251-2269.
18. Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J., Research on Advanced Materials for Li- ion Batteries. Adv. Mater. 2009, 21, 4593-4607.
19. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Adv. Mater. 2011, 23, 1695-1715.
20. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci.
2011, 4, 2682-2699.
21. Lee, K. T.; Cho, J., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6, 28-41.
22. Shiraishi, S.; Kanamura, K.; Takehara, Z., Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution-deposition cycles. J.
Electrochem. Soc. 1999, 146, 1633-1639.
23. Tossici, R.; Berrettoni, M.; Nalimova, V.; Marassi, R.; Scrosati, B., A high-rate carbon electrode for rechargeable lithium-ion batteries. J. Electrochem. Soc. 1996, 143, L64-L67.
24. Cassagneau, T.; Fendler, J. H., High density rechargeable lithium-ion batteries self- assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv. Mater. 1998, 10, 877- 881.
25. Flandrois, S.; Simon, B., Carbon materials for lithium-ion rechargeable batteries.
Carbon 1999, 37, 165-180.
26. Yoshio, M.; Wang, H. Y.; Fukuda, K., Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew. Chem. Int. Ed. 2003, 42, 4203-4206.
27. Yoshio, M.; Wang, H. Y.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z., Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 2004, 14, 1754-1758.
28. Ji, L. W.; Zhang, X. W., Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 2009, 20.
29. Lin, Z.; Ji, L. W.; Woodroof, M. D.; Zhang, X. W., Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. J.
Power Sources 2010, 195, 5025-5031.
39
30. Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.;
Cui, Y.; Dai, H. J., Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.
31. Han, F. D.; Yao, B.; Bai, Y. J., Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries. J. Phys. Chem. C
2011, 115, 8923-8927.32. Mukherjee, R.; Thomas, A. V.; Krishnamurthy, A.; Koratkar, N., Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries. ACS Nano 2012, 6, 7867-7878.
33. Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stollers, M. D.; Ruoff, R. S., Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. ACS Nano 2011, 5, 3333-3338.
34. Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y., A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett.
1999, 2, 547-549.
35. Kasavajjula, U.; Wang, C. S.; Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003-1039.
36. Obrovac, M. N.; Krause, L. J., Reversible cycling of crystalline silicon powder. J.
Electrochem. Soc. 2007, 154, A103-A108.
37. Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M., Si electrodes for li-ion batteries - A new way to look at an old problem. J. Electrochem. Soc. 2008, 155, A158- A163.
38. Teki, R.; Datta, M. K.; Krishnan, R.; Parker, T. C.; Lu, T. M.; Kumta, P. N.; Koratkar, N., Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries. Small 2009, 5, 2236-2242.
39. Chandrasekaran, R.; Magasinski, A.; Yushin, G.; Fuller, T. F., Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature. J. Electrochem.
Soc. 2010, 157, A1139-A1151.
40. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R., Colossal
reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 2001, 4, A137-
A140.
40
41. Ryu, J. H.; Kim, J. W.; Sung, Y. E.; Oh, S. M., Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 2004, 7, A306-A309.
42. Bourderau, S.; Brousse, T.; Schleich, D. M., Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 1999, 81, 233-236.
43. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B., Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 2003, 6, A194-A197.
44. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High- performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.
45. Trevey, J. E.; Rason, K. W.; Stoldt, C. R.; Lee, S. H., Improved Performance of All- Solid-State Lithium-Ion Batteries Using Nanosilicon Active Material with Multiwalled- Carbon-Nanotubes as a Conductive Additive. Electrochem. Solid-State Lett. 2010, 13, A154- A157.
46. Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G., Cu- Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries. Adv. Mater.
2011, 23, 4415-4420.
47. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414-429.
48. Zhou, X. S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G., Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium- Ion Batteries. Adv. Energy Mater. 2012, 2, 1086-1090.
49. Kim, H.; Seo, M.; Park, M.-H.; Cho, J., A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. 2010, 49, 2146-2149.
50. Wu, H.; Zheng, G. Y.; Liu, N. A.; Carney, T. J.; Yang, Y.; Cui, Y., Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2012, 12, 904- 909.
51. Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.;
Chang, H.; Il Park, W.; Zang, D. S.; Kim, H.; Huang, Y. G.; Hwang, K. C.; Rogers, J. A.;
Paik, U., Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries. Nano Lett.
2010, 10, 1710-1716.
41
52. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310-315.
53. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y., Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Lett. 2009, 9, 3370-3374.
54. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.;
Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A., Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material. J. Am. Chem. Soc. 2011, 133, 20914-20921.
55. Maranchi, J. P.; Hepp, A. F.; Kumta, P. N., High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A198-A201.
56. Abel, P. R.; Lin, Y. M.; Celio, H.; Heller, A.; Mullins, C. B., Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation. ACS Nano 2012, 6, 2506-2516.
57. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
58. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Lett. 2009, 9, 3844-3847.
59. Liu, W. R.; Yang, M. H.; Wu, H. C.; Chiao, S. M.; Wu, N. L., Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid-State Lett. 2005, 8, A100-A103.
60. Chen, L. B.; Xie, X. H.; Xie, J. Y.; Wang, K.; Yang, J., Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J. Appl.
Electrochem. 2006, 36, 1099-1104.
61. Lestrie, B.; Bahri, S.; Sandu, I.; Roue, L.; Guyomard, D., On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun. 2007, 9, 2801- 2806.
62. Choi, N. S.; Yew, K. H.; Choi, W. U.; Kim, S. S., Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J. Power Sources 2008, 177, 590-594.
63. Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wohrle, T.; Wurm,
C.; Winter, M., Silicon/graphite composite electrodes for high-capacity anodes: Influence of
binder chemistry on cycling stability. Electrochem Solid-State Lett. 2008, 11, A76-A80.
42
64. Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R., Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder. J. Electrochem. Soc. 2008, 155, A234-A238.
65. Komaba, S.; Ozeki, T.; Yabuuchi, N.; Shimomura, K., Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries.
Electrochemistry 2011, 79, 6-9.
66. Munao, D.; van Erven, J. W. M.; Valvo, M.; Garcia-Tamayo, E.; Kelder, E. M., Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J.
ower Sources 2011, 196, 6695-6702.
67. Jeong, S. S.; Bockenfeld, N.; Balducci, A.; Winter, M.; Passerini, S., Natural cellulose as binder for lithium battery electrodes. J. Power Sources 2012, 199, 331-335.
68. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.;
Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Appl. Mater. Interfaces 2010, 2, 3004-3010.
69. Chen, Z. H.; Christensen, L.; Dahn, J. R., Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J.
Electrochem. Soc. 2003, 150, A1073-A1078.
70. Bridel, J. S.; Azaïs, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D., Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries. Chem. Mater.
2010, 22, 1229-1241.