• Tidak ada hasil yang ditemukan

33

and the thickness change was measured at various soaking time. According to report by Kovalenko and co-workers, little-to-no interaction between polymeric binder and electrolyte is required to achive the stable mechanical properties in electrolyte. In accord with that report, our PAA-BP binder showed little swelling (101.8%) in DEC solution, whereas the conventional PAA films displayed relatively larger swelling (104.9%), suggesting good mechanical stability in electrolyte solution.68, 75

Figure 1 BP elect (c) bare (blue) ba

16. (a) Cycle trode under U

PAA-BP ele are PAA-BP

e performanc UV-irradiati ectrode at va P electrode at

ce of (circle) on. (b, c) Vo arious cycle t different cu

34

bare PAA-B oltage profil

numbers. (d urrent rates.

BP electrode es of (b) cro d) Rate perfo

and (triangle oss-linked PA ormance of (r

e) cross-link AA-BP elect red) cross-lin

ked PAA- trode and

nked and

Figure delithiat after 60t electrod binder i mechani

17. (a) Ex s tion, and afte

th cycles, ind e after 60th in electrolyte ical propertie

itu measurem er 60th cycles dicating disin cycles was m e solution. C es upon wett

ment for thic s. Inset imag ntegration of

measured w Change in P ting in the ap

35

ckness trace ge shows the f bare PAA-B with the film

PAA-BP bin protic electro

e of the PAA e (left) bare a BP electrode residue. (b) nder is lowe lyte solution

A-BP electro and (right) c e. The thickn Swelling of er than PAA n.

odes at full l cross-linked e

ness of bare f PAA and A, resulting

ithiation, electrode PAA-BP PAA-BP in stable

Figure study.

18. (a) XRDD pattern, (bb) TEM ima

36

ages of carboon-coated sillicon active--material useed in the

37 VI. REFERENCES

1. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries.

Nature 2001, 414, 359-367.

2. Dunn, B.; Kamath, H.; Tarascon, J. M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935.

3. Yoshino, A., The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Edit. 2012, 51, 5798-5800.

4. Megahed, S.; Scrosati, B., Lithium-Ion Rechargeable Batteries. J. Power Sources. 1994, 51, 79-104.

5. Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G., Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977-980.

6. Park, J.-K., Principles and Applications of Lithium Secondary Batteries. WIELY 2012 7. Owen, J. R., Rechargeable lithium batteries. Chem. Soc. Rev. 1997, 26, 259-267.

8. Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R., Beyond Intercalation-Based Li- Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater. 2010, 22, 170-192.

9. Scrosati, B.; Hassoun, J.; Sun, Y. K., Lithium-ion batteries. A look into the future.

Energy Environ. Sci. 2011, 4, 3287-3295.

10. Broussely, M.; Archdale, G., Li-ion batteries and portable power source prospects for the next 5-10 years. J. Power Sources 2004, 136, 386-394.

11. Wakihara, M., Recent developments in lithium ion batteries. Mat. Sci. Eng. R. 2001, 33, 109-134.

12. Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes.

Energy Environ. Sci. 2011, 4, 56-72.

13. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P., Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725-763.

14. Odani, A.; Nimberger, A.; Markovsky, B.; Sominski, E.; Levi, E.; Kumar, V. G.; Motiei, A.; Gedanken, A.; Dan, P.; Aurbach, D., Development and testing of nanomaterials for rechargeable lithium batteries. J. Power Sources 2003, 119, 517-521.

15. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.

2005, 4, 366-377.

38

16. Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.

17. Wang, Y.; Cao, G. Z., Developments in nanostructured cathode materials for high- performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251-2269.

18. Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J., Research on Advanced Materials for Li- ion Batteries. Adv. Mater. 2009, 21, 4593-4607.

19. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Adv. Mater. 2011, 23, 1695-1715.

20. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci.

2011, 4, 2682-2699.

21. Lee, K. T.; Cho, J., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6, 28-41.

22. Shiraishi, S.; Kanamura, K.; Takehara, Z., Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution-deposition cycles. J.

Electrochem. Soc. 1999, 146, 1633-1639.

23. Tossici, R.; Berrettoni, M.; Nalimova, V.; Marassi, R.; Scrosati, B., A high-rate carbon electrode for rechargeable lithium-ion batteries. J. Electrochem. Soc. 1996, 143, L64-L67.

24. Cassagneau, T.; Fendler, J. H., High density rechargeable lithium-ion batteries self- assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv. Mater. 1998, 10, 877- 881.

25. Flandrois, S.; Simon, B., Carbon materials for lithium-ion rechargeable batteries.

Carbon 1999, 37, 165-180.

26. Yoshio, M.; Wang, H. Y.; Fukuda, K., Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew. Chem. Int. Ed. 2003, 42, 4203-4206.

27. Yoshio, M.; Wang, H. Y.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z., Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 2004, 14, 1754-1758.

28. Ji, L. W.; Zhang, X. W., Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 2009, 20.

29. Lin, Z.; Ji, L. W.; Woodroof, M. D.; Zhang, X. W., Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. J.

Power Sources 2010, 195, 5025-5031.

39

30. Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.;

Cui, Y.; Dai, H. J., Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.

31. Han, F. D.; Yao, B.; Bai, Y. J., Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries. J. Phys. Chem. C

2011, 115, 8923-8927.

32. Mukherjee, R.; Thomas, A. V.; Krishnamurthy, A.; Koratkar, N., Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries. ACS Nano 2012, 6, 7867-7878.

33. Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stollers, M. D.; Ruoff, R. S., Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. ACS Nano 2011, 5, 3333-3338.

34. Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y., A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett.

1999, 2, 547-549.

35. Kasavajjula, U.; Wang, C. S.; Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003-1039.

36. Obrovac, M. N.; Krause, L. J., Reversible cycling of crystalline silicon powder. J.

Electrochem. Soc. 2007, 154, A103-A108.

37. Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M., Si electrodes for li-ion batteries - A new way to look at an old problem. J. Electrochem. Soc. 2008, 155, A158- A163.

38. Teki, R.; Datta, M. K.; Krishnan, R.; Parker, T. C.; Lu, T. M.; Kumta, P. N.; Koratkar, N., Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries. Small 2009, 5, 2236-2242.

39. Chandrasekaran, R.; Magasinski, A.; Yushin, G.; Fuller, T. F., Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature. J. Electrochem.

Soc. 2010, 157, A1139-A1151.

40. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R., Colossal

reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 2001, 4, A137-

A140.

40

41. Ryu, J. H.; Kim, J. W.; Sung, Y. E.; Oh, S. M., Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 2004, 7, A306-A309.

42. Bourderau, S.; Brousse, T.; Schleich, D. M., Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 1999, 81, 233-236.

43. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B., Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 2003, 6, A194-A197.

44. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High- performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.

45. Trevey, J. E.; Rason, K. W.; Stoldt, C. R.; Lee, S. H., Improved Performance of All- Solid-State Lithium-Ion Batteries Using Nanosilicon Active Material with Multiwalled- Carbon-Nanotubes as a Conductive Additive. Electrochem. Solid-State Lett. 2010, 13, A154- A157.

46. Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G., Cu- Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries. Adv. Mater.

2011, 23, 4415-4420.

47. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414-429.

48. Zhou, X. S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G., Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium- Ion Batteries. Adv. Energy Mater. 2012, 2, 1086-1090.

49. Kim, H.; Seo, M.; Park, M.-H.; Cho, J., A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. 2010, 49, 2146-2149.

50. Wu, H.; Zheng, G. Y.; Liu, N. A.; Carney, T. J.; Yang, Y.; Cui, Y., Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2012, 12, 904- 909.

51. Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.;

Chang, H.; Il Park, W.; Zang, D. S.; Kim, H.; Huang, Y. G.; Hwang, K. C.; Rogers, J. A.;

Paik, U., Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries. Nano Lett.

2010, 10, 1710-1716.

41

52. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310-315.

53. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y., Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Lett. 2009, 9, 3370-3374.

54. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.;

Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A., Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material. J. Am. Chem. Soc. 2011, 133, 20914-20921.

55. Maranchi, J. P.; Hepp, A. F.; Kumta, P. N., High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A198-A201.

56. Abel, P. R.; Lin, Y. M.; Celio, H.; Heller, A.; Mullins, C. B., Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation. ACS Nano 2012, 6, 2506-2516.

57. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

58. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Lett. 2009, 9, 3844-3847.

59. Liu, W. R.; Yang, M. H.; Wu, H. C.; Chiao, S. M.; Wu, N. L., Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid-State Lett. 2005, 8, A100-A103.

60. Chen, L. B.; Xie, X. H.; Xie, J. Y.; Wang, K.; Yang, J., Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J. Appl.

Electrochem. 2006, 36, 1099-1104.

61. Lestrie, B.; Bahri, S.; Sandu, I.; Roue, L.; Guyomard, D., On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun. 2007, 9, 2801- 2806.

62. Choi, N. S.; Yew, K. H.; Choi, W. U.; Kim, S. S., Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J. Power Sources 2008, 177, 590-594.

63. Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wohrle, T.; Wurm,

C.; Winter, M., Silicon/graphite composite electrodes for high-capacity anodes: Influence of

binder chemistry on cycling stability. Electrochem Solid-State Lett. 2008, 11, A76-A80.

42

64. Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R., Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder. J. Electrochem. Soc. 2008, 155, A234-A238.

65. Komaba, S.; Ozeki, T.; Yabuuchi, N.; Shimomura, K., Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries.

Electrochemistry 2011, 79, 6-9.

66. Munao, D.; van Erven, J. W. M.; Valvo, M.; Garcia-Tamayo, E.; Kelder, E. M., Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J.

ower Sources 2011, 196, 6695-6702.

67. Jeong, S. S.; Bockenfeld, N.; Balducci, A.; Winter, M.; Passerini, S., Natural cellulose as binder for lithium battery electrodes. J. Power Sources 2012, 199, 331-335.

68. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.;

Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Appl. Mater. Interfaces 2010, 2, 3004-3010.

69. Chen, Z. H.; Christensen, L.; Dahn, J. R., Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J.

Electrochem. Soc. 2003, 150, A1073-A1078.

70. Bridel, J. S.; Azaïs, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D., Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries. Chem. Mater.

2010, 22, 1229-1241.

71. Li, J.; Lewis, R. B.; Dahn, J. R., Sodium carboxymethyl cellulose - A potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 2007, 10, A17- A20.

72. Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K., Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries. J. Phys.

Chem. C 2011, 115, 13487-13495.

73. Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z. J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T., Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries. J.

Phys. Chem. C 2012, 116, 1380-1389.

74. Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J., A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries.

Angew. Chem. Int. Ed. 2012, 51, 8762-8767.

43

75. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.;

Luzinov, I.; Yushin, G., A Major Constituent of Brown Algae for Use in High-Capacity Li- Ion Batteries. Science 2011, 333, 75-79.

76. Liu, G.; Xun, S. D.; Vukmirovic, N.; Song, X. Y.; Olalde-Velasco, P.; Zheng, H. H.;

Battaglia, V. S.; Wang, L. W.; Yang, W. L., Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes. Adv. Mater. 2011, 23, 4679-4683.

77. Guo, J. C.; Wang, C. S., A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem. Commun. 2010, 46, 1428-1430.

78. Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.;

Park, J. K.; Lee, H.; Choi, J. W., Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries. Adv. Mater. DOI:

10.1002/adma.201203981

79. Yang, S. Y.; Rubner, M. F., Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers. J. Am. Chem. Soc. 2002, 124, 2100-2101.

80. Park, M. K.; Deng, S. X.; Advincula, R. C., pH-sensitive bipolar ion-permselective ultrathin films. J. Am. Chem. Soc. 2004, 126, 13723-13731.

81. Lehaf, A. M.; Moussallem, M. D.; Schlenoff, J. B., Correlating the Compliance and Permeability of Photo-Cross-Linked Polyelectrolyte Multilayers. Langmuir 2011, 27, 4756- 4763.

82. Lin, A. A.; Sastri, V. R.; Tesoro, G.; Reiser, A.; Eachus, R., On the Cross-Linking Mechanism of Benzophenone-Containing Polyimides. Macromolecules 1988, 21, 1165-1169.

83. Prucker, O.; Naumann, C. A.; Ruhe, J.; Knoll, W.; Frank, C. W., Photochemical attachment of polymer films to solid surfaces via monolayers of benzophenone derivatives. J.

Am. Chem. Soc. 1999, 121, 8766-8770.

84. Park, M. K.; Deng, S. X.; Advincula, R. C., Sustained release control via photo-cross- linking of polyelectrolyte layer-by-layer hollow capsules. Langmuir 2005, 21, 5272-5277.

85. Chen, Y.; Cho, J.; Young, A.; Taton, T. A., Enhanced stability and bioconjugation of photo-cross-linked polystyrene-shell, au-core nanoparticles. Langmuir 2007, 23, 7491-7497.

86. Seo, J. H.; Park, J.; Plett, G.; Sastry, A. M., Gas-Evolution Induced Volume Fraction Changes and Their Effect on the Performance Degradation of Li-Ion Batteries. Electrochem.

Solid-State Lett. 2010, 13, A135-A137.

Dokumen terkait