• Tidak ada hasil yang ditemukan

We have demonstrated that Silicon-Encapsulating Spherical Carbon Microbeads improved the cycling performance due to their void space to buffer volume change of Si during repeated cycle. Void structure of Spherical Carbon Microbeads obtained via chemical etching was investigated by XRD patterns, cross-section SEM images, and pore size distribution analysis from N2 sorption. It is considered that Silicon-Encapsulating Spherical Carbon Microbeads are a promising design to minimize the volume expansion of Si-based anodes upon Li de/insertion and to increase tap density of electrodes

Also, the lithiation and delithiation electrochemical performance of Fe-phthalocyanine coated silicon for lithium-ion batteries was examined. Si/Carbon 50 wt. % ratio shows improve than the other, through the carbon coated silicon.

35

References

1. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.

2. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R., Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 2001, 4 (9), A137-A140.

3. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-7.

4. (a) Dunn, B.; Kamath, H.; Tarascon, J. M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935; (b) Dubarry, M.; Liaw, B. Y.; Chen, M. S.; Chyan, S. S.; Han, K.

C.; Sie, W. T.; Wu, S. H., Identifying battery aging mechanisms in large format Li ion cells. Journal of Power Sources 2011, 196 (7), 3420-3425.

5. Palacin, M. R., Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society reviews 2009, 38 (9), 2565-2575.

6. (a) MacNeil, D. D.; Dahn, J. R., The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. Journal of the Electrochemical Society 2002, 149 (7), A912-A919; (b) MacNeil, D. D.; Hatchard, T. D.; Dahn, J. R., A comparison between the high temperature electrode/ electrolyte reactions of LixCoO2 and LixMn2O4. Journal of the Electrochemical Society 2001, 148 (7), A663-A667; (c) MacNeil, D. D.; Lu, Z. H.;

Chen, Z. H.; Dahn, J. R., A comparison of the el ectrode/elect rolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of Power Sources 2002, 108 (1-2), 8-14; (d) M acNeil, D. D.; Dahn, J. R., Can an electrolyte for lithium-ion batteries be too stable? Journal of the Electrochemical Society 2003, 150 (1), A21- A28.

7. Larcher, D.; Beattie, S.; Morcrette, M.; Edstroem, K.; Jumas, J. C.; Tarascon, J. M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 2007, 17 (36), 3759-3772.

8. Kasavajjula, U.; Wang, C. S.; Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources 2007, 163 (2), 1003-1039.

9. Zhang, W. J., A review of the electrochemical perform ance of alloy anodes for lithium-ion batteries.

Journal of Power Sources 2011, 196 (1), 13-24.

10. Obrovac, M. N.; Christensen, L., Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett. 2004, 7 (5), A93-A96.

11. Wang, G. X.; Ahn, J. H.; Yao, J.; Bewlay, S.; Liu, H. K., Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochemistry Communications 2004, 6 (7), 689-692.

12. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-67.

13. (a) Huggins, R. A., Lithium alloy negative electrodes. Journal of Power Sources 1999, 81 (0), 13-19;

(b) Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J., Li-alloy based anode materials for Li secondary batteries.

Chemical Society reviews 2010, 39 (8), 3115-41.

14. (a) Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Mat erials for Rechargeable Lithium Batteries. Advanced Materials 1998, 10 (10), 725-763; (b) Larcher, D.; Beattie, S.;

Morcrette, M.; Edstrom, K.; Jumas, J.-C.; Tarascon, J.-M., Recent findings and prospects in the field of pure metals as negative el ectrodes for Li-ion batteries. J. Mater. Chem. 2007, 17 (36), 3759-3772; (c) Thackeray, M.

M.; Vaughey, J. T.; Fransson, L. M. L., Recent developments in anode materials for lithium batteries. JOM 2002, 54 (3), 20-23; (d) Winter, M.; Besenhard, J. O., Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta 1999, 45 (1), 31-50.

36

15. (a) Benedek, R.; Thackeray, M. M., Lithium reactions with intermetallic-compound electrodes.

Journal of Power Sources 2002, 110 (2), 406-411; (b) Kasavajjula, U.; Wang, C.; Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources 2007, 163 (2), 1003-1039.

16. Peled, E., Improved Graphite Anode for Lithium-Ion Batteries Chemically. Journal of The Electrochemical Society 1996, 143 (1), L4.

17. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources 2009, 189 (2), 1132-1140.

18. Tamura, N.; Ohshita, R.; Fujimoto, M.; Kamino, M.; Fujitani , S., Advanced Structures in Electrodeposited Tin Base Negative Electrodes for Lithium Secondary Batteries. Journal of The Electrochemical Society 2003, 150 (6), A679-A683.

19. (a) Kim, H.; Choi, J.; Sohn, H. J.; Kang, T., The Insertion Mechanism of Lithium into Mg2Si Anode Material for Li-Ion Batteries. Journal of the Electrochemical Society 1999, 146 (12), 4401-4405; (b) Yang, J.;

Wachtler, M.; Winter, M.; Besenhard, J. O., Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries. Electrochemical and Solid-State Letters 1999, 2 (2-4), 161-163; (c) Wachtler, M.; Winter, M.; Besenhard, J. O., Anodic materials for rechargeable Li-batteries. Journal of Power Sources 2002, 105 (2), 151-160; (d) Wachtler, M.; Besenhard, J. O.; Winter, M., Tin and tin-based intermetallics as new anode materials for lithium-ion cells. Journal of Power Sources 2001, 94 (2), 189-193.

20. Kim, J. W., Ascorbic acid enhances nitric oxide production in trabecular meshwork cells. Korean journal of ophthalmology : KJO. 2005, 19 (3), 227-232.

21. Vaughey, J. T.; Fransson, L.; Swinger, H. A.; Edström, K.; Thackeray, M. M., Alternative anode materials for lithium-ion batteries: A study of Ag3Sb. Journal of Power Sources 2003, 119-121, 64-68.

22. (a) Li, H.; Shi, L.; Lu, W.; Huang, X.; Chen, L., Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries. Journal of the Electrochemical Society 2001, 148 (8), A915- A922; (b) Ulus, A.; Rosenberg, Y.; Burstein, L.; Peled, E., Tin alloy-graphite composite anode for lithium-ion batteries. Journal of the Electrochemical Society 2002, 149 (5), A635-A643; (c) Li, H.; Huang, X.; Chen, L., Direct imaging of the passivating film and microstructure of nanometer-scal e SnO anodes in lithium rechargeable batteries. Electrochemical and Solid-State Letters 1998, 1 (6), 241-243; (d) Stjerndahl, M.;

Bryngelsson, H.; Gustafsson, T.; Vaughey, J. T.; Thackeray, M. M.; Edström, K., Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries. Electrochimica Acta 2007, 52 (15), 4947-4955.

23. Wen, C. J.; Huggins, R. A., Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System.

Journal of Solid State Chemistry 1981, 37 (3), 271-278.

24. Boukamp, B. A.; Lesh, G. C.; Huggins, R. A., All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix. Journal of The Electrochemical Society 1981, 128 (4), 725-729.

25. Kim, J. W.; Ryu, J. H.; Lee, K. T.; Oh, S. M., Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries. Journal of Power Sources 2005, 147 (1–2), 227- 233.

26. (a) Yoon, S.; Manthiram, A., Sb-MOx-C (M = Al, Ti, or Mo) nanocomposite anodes for lithium-ion batteries. Chemistry of Materials 2009, 21 (16), 3898-3904; (b) Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.;

Beattie, S.; Pérès, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M., Towards a fundamental underst anding of the improved electrochemical perform ance of silicon-carbon composites. Advanced Functional Materials 2007, 17 (11), 1765-1774; (c) Park, C. M.; Sohn, H. J., A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries. Electrochimica Acta 2009, 54 (26), 6367-6373; (d) Lee, H. Y.;

Kim, Y. L.; Hong, M. K.; Lee, S. M., Carbon-coat ed Ni20Si80 alloy-graphite composite as an anode material for lithium-ion batteries. Journal of Power Sources 2005, 141 (1), 159-162.

Dokumen terkait