• Tidak ada hasil yang ditemukan

Conclusions and further research plans

With more than 10 years’ efforts on the CVD growth of 2D materials, two routes have been developed in synthesizing WSSC 2D materials: (i) growing from only one nucleus of a 2D material on a substrate and (ii) seamless stitching of unidirectionally aligned 2D material islands. In Chapter 1-2, both the current experimental work and theoretical understanding on the growth of 2D single crystals were reviewed. Despite there is an epitaxial relationship between a 2D material and its substrate during the nucleation stage, the crystallographic lattice of the 2D island can be maintained when it grows across the grain boundaries of the underlying substrate due the weak interactions between the 2D material and its substrate, and therefore synthesis of single crystalline 2D materials on polycrystalline substrates is possible via route (i). However, a very low nucleation density (ideally only one nucleus on the whole substrate) or a very high nucleation barrier is needed to growth WSSC 2D material, which requires a delicate experimental setup. In addition, it usually takes hours to grow a WSSC 2D material via route (i) because only one nucleus is allowed to be formed and grow. In contrast, the route (ii) offers a more cost-effective method because a large amount of 2D nuclei grow simultaneously, while in this method proper substrates that can template the growth of unidirectionally aligned 2D islands are required.

In this dissertation, a systematic theoretical study on the alignment of 2D materials on an arbitrary TM substrate has been presented firstly. The alignment mechanisms of 2D materials on the substrate are revealed at atomic scale. Because single crystalline Cu(111) surface is one of the most promising substrates for the synthesis of WSSC 6-fold symmetric 2D materials, a new contact-free annealing method of transforming commercial polycrystalline Cu foils into single-crystalline ones has also been proposed in this dissertation. In the final part of this dissertation, we presented a systematic study on the formation mechanism applications of graphene super moiré pattern on various TM surfaces.

Because of the lattice mismatch between graphene and the substrate, graphene super moiré patterns usually appear on most TM substrates after CVD growth, which leads to the deformation of the graphene layer and new properties.

For the study on the alignment of 2D materials on an arbitrary TM substrate, the substrates are classified into low-index high symmetric and high-index low symmetric ones. On a high symmetric substrate, 2D materials usually show multi-orientations. In the Chapter 4, the symmetries of various FCC TM surfaces and various 2D materials are introduced. It is found that a high symmetric direction of a 2D material prefers to align along a high symmetric direction of the substrate, based on which we proposed that unidirectionally aligned 2D islands can be synthesized on a substrate only if the symmetry group of the substrate is a subgroup of that of the 2D material. For instance, C6V 2D material shows 1 preferential orientation on C6V FCC{111} surface and C2V FCC{110} surface, and 2 preferential

162

orientation on C4V FCC{100} surface; C3V 2D materials show 2, 4 and 2 preferential orientation on C6V

FCC{111}, C4V FCC{100} and C2V FCC{110} surface, respectively.

Different from low-index substrates, high-index substrates show much lower symmetries due to the existence of step edges. Moreover, in principle, there are unlimited number of high-index substrates. As have been revealed in Chapter 4, such low symmetric substrates might be more promising in the synthesis of unidirectionally aligned 2D materials. In the Chapter 5-8, the alignment of C6V

graphene and C3V hBN on an arbitrary low symmetric Cu surface are explored. It is found that the orientation of a 2D island on a low symmetric surface is determined by the interaction between the Cu step edge and the edge of the 2D island, and well-aligned graphene islands can be always achieved on the ideal low symmetric Cu surfaces which have unidirectional step edges with a constant direction.

However, in practice there are always certain variations of step edge direction because of the existence of surface roughness. We further revealed that well-aligned graphene islands can still be maintained on Cu{111}-based low symmetric surface and Cu{110}-based low symmetric surface with <211>

dominated meandering step edges. For the C3V hBN, its alignment on low symmetric Cu surfaces is more complicated, and also affected by the ambient condition due to its binary composition. On Cu{111}-based low symmetric surfaces, unidirectional hBN islands can be maintained with step edge direction changing in a range of ± 19.10° with respect to <110> direction at 𝜇𝑁 =−8.31 ~ −9.61 eV, while it can be maintained in a larger range with ± 29.99° with respect to <110> direction at 𝜇𝑁 =−9.62

~ −10.84 eV. Cu{110}-based low symmetric surfaces with <211> dominated steps are also suitable for hBN epitaxial growth. Moreover, we found that a high-index surface with a larger tilted angle from its low-index terrace can tolerate higher surface roughness and keep the change of step edge direction in a small range, and therefore is more preferred for the growth of unidrtional 2D islands, as compared to a high-index surface with a lower tilted angle from its terrace. Except for graphene and hBN, the aligment of WS2 islands on Au{111}-based low symmetric surfaces are also been exploerd, and the results are similar to those of hBN on Cu{111}-based low symmetric surfaces because both WS2 and hBN are 3- fold symmetric and have a binary composition.

For the fabrication of large-size single-crystalline Cu(111) foils, in collaboration with experimental groups, we successfully realized single crystalline Cu{111}<112> foils with the size up to 32 cm2 by a contact-free annealing method and explored the transformation mechanism from polycrystalline Cu foils into single crystals at the atomic scale, as discussed in the Chapter 10. It is revealed that the nucleation of the Cu{111}<112> starts from a Cu{112}<111> grain of the raw Cu foil, and the driving force of the grain rotation from Cu{112}<111> to Cu{111}<112> is the decrease of surface energy and the rotation is mediated by the gliding of the stacking faults that produced in the high annealing temperature.

163

In Chapter 11, we systematically investigated the structures of graphene moiré patterns on various substrates. Graphene film on a mismatched TM surfaces usually show a highly corrugated graphene moiré superstructure at a small rotation angle due to the non-uniform interaction between graphene and the substrate, while the anisotropy decays and an ultra-flat graphene structure will appear with the increase of rotation angle. DFT calculations prove that the rotation-dependent moiré superstructures on the Ru(0001) surfaces are able to template the fabrication of the matrices of size- tunable metal clusters. Moreover, we found that the competition of graphene - substrate binding energy and the curvature energy in graphene is responsible for the formation of two kinds of graphene structures, and we further formulate the evolution of the binding energy and curvature energy as a function of rotation angle, and based on these rules, the transition from corrugated to ultra-flat graphene film and further the morphology of graphene layers can be predicted easily. This study is very helpful for designing an appropriate system of graphene/TM substrate for the synthesis of TM clusters with desired structures.

To summarize, in this dissertation, we theoretically studied the alignment of graphene, hBN and TMDCs on both high-index and low-index TM substrates, and the novel behaviors of the grown graphene layers on various TM surfaces. In addition, we also introduced a new method of fabricating large-size single-crystalline Cu foils and revealed the corresponding mechanism at atomic scale. All our theoretical results are well consistent with existing experimental observations. We believe that our study can greatly promote the controllable synthesis of 2D materials and various WSSC 2D materials will be synthesized in the near future. It should be noted that there are still lots of scientific problems in this area that need to be further explored. For example, the study on the alignment of TMDC on substrates is quite preliminary and researches on the alignment of TMDC islands on insulated surfaces, such as hBN and Al2O3, are needed. Besides, Surface reconstruction or step reconstruction is also a very important issue for the growth of 2D materials, which also needs to be considered in the future work.

Moreover, how 2D materials growing across the step edges of a substrate also needs to be investigated, which is also of critical importance in choosing proper substrates for the synthesis of 2D materials.

164

References

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;

Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666.

(2) Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.;

Marchenkov, A. N.et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312 (5777), 1191.

(3) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183.

(4) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1), 109.

(5) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat.

Photonics 2010, 4, 611.

(6) Lemme, M. C.; Echtermeyer, T. J.; Baus, M.; Kurz, H. A Graphene Field-Effect Device. IEEE Electron Device Letters 2007, 28 (4), 282.

(7) Liang, X.; Fu, Z.; Chou, S. Y. Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer. Nano Lett. 2007, 7 (12), 3840.

(8) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 2012, 7, 699.

(9) Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.et al. Progress, Challenges, and Opportunities in Two- Dimensional Materials Beyond Graphene. ACS Nano 2013, 7 (4), 2898.

(10) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two- dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5 (4), 263.

(11) Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev.

2013, 113 (5), 3766.

(12) Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition. Advanced Optical Materials 2014, 2 (2), 131.

(13) Sun, Z.; Chang, H. Graphene and Graphene-like Two-Dimensional Materials in Photodetection:

Mechanisms and Methodology. ACS Nano 2014, 8 (5), 4133.

(14) Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899.

(15) Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353 (6298), aac9439.

165

(16) Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331 (6017), 568.

(17) Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.;

Steele, G. A. Laser-Thinning of MoS₂: On Demand Generation of a Single-Layer Semiconductor. Nano Lett. 2012, 12 (6), 3187.

(18) Huo, C.; Yan, Z.; Song, X.; Zeng, H. 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull. 2015, 60 (23), 1994.

(19) Tao, H.; Zhang, Y.; Gao, Y.; Sun, Z.; Yan, C.; Texter, J. Scalable exfoliation and dispersion of two-dimensional materials – an update. Phys. Chem. Chem. Phys. 2017, 19 (2), 921.

(20) Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O'Neill, A.; Duesberg, G. S.;

Grunlan, J. C.; Moriarty, G.et al. Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Adv. Mater. 2011, 23 (34), 3944.

(21) Zhang, Y.; Zhang, L.; Zhou, C. Review of Chemical Vapor Deposition of Graphene and Related Applications. Acc. Chem. Res. 2013, 46 (10), 2329.

(22) Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P. E.;

Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J.et al. Graphene Epitaxy by Chemical Vapor Deposition on SiC. Nano Lett. 2011, 11 (4), 1786.

(23) Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable Synthesis of Uniform Few-Layer Hexagonal Boron Nitride Dielectric Films. Nano Lett. 2013, 13 (1), 276.

(24) Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.-i.; Mizuno, S. Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. ACS Nano 2010, 4 (12), 7407.

(25) Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, W.;

Velamakanni, A.; Zhu, Y.et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10 (11), 4328.

(26) Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21 (10), 3324.

(27) Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical Vapor Deposition and Etching of High- Quality Monolayer Hexagonal Boron Nitride Films. ACS Nano 2011, 5 (9), 7303.

(28) Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.et al. Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett. 2012, 12 (1), 161.

(29) Lee, Y.-H.; Zhang, X.-Q.; Zhang, W.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.;

Wang, J. T.-W.; Chang, C.-S.; Li, L.-J.et al. Synthesis of Large-Area MoS₂ Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24 (17), 2320.

166

(30) Wong, S. L.; Liu, H.; Chi, D. Recent progress in chemical vapor deposition growth of two- dimensional transition metal dichalcogenides. Prog. Cryst. Growth Charact. Mater. 2016, 62 (3), 9.

(31) Narula, U.; Tan, C. M.; Lai, C. S. Copper induced synthesis of graphene using amorphous carbon. Microelectron. Reliab. 2016, 61, 87.

(32) Glavin, N. R.; Jespersen, M. L.; Check, M. H.; Hu, J.; Hilton, A. M.; Fisher, T. S.; Voevodin, A. A. Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition.

Thin Solid Films 2014, 572, 245.

(33) Yang, Z.; Hao, J. Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C 2016, 4 (38), 8859.

(34) Xia, J.; Li, X.-Z.; Huang, X.; Mao, N.; Zhu, D.-D.; Wang, L.; Xu, H.; Meng, X.-M. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 2016, 8 (4), 2063.

(35) Zhang, X.; Zhang, Y.; Yu, B.-B.; Yin, X.-L.; Jiang, W.-J.; Jiang, Y.; Hu, J.-S.; Wan, L.-J.

Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (38), 19277.

(36) Wofford, J. M.; Oliveira, M. H.; Schumann, T.; Jenichen, B.; Ramsteiner, M.; Jahn, U.; Fölsch, S.; Lopes, J. M. J.; Riechert, H. Molecular beam epitaxy of graphene on ultra-smooth nickel:

growth mode and substrate interactions. New J. Phys. 2014, 16 (9), 093055.

(37) Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M.

J.; Riechert, H. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Appl. Phys. Lett. 2015, 106 (21), 213108.

(38) Chen, M.-W.; Ovchinnikov, D.; Lazar, S.; Pizzochero, M.; Whitwick, M. B.; Surrente, A.;

Baranowski, M.; Sanchez, O. L.; Gillet, P.; Plochocka, P.et al. Highly Oriented Atomically Thin Ambipolar MoSe₂ Grown by Molecular Beam Epitaxy. ACS nano 2017, 11 (6), 6355.

(39) Cheng, T. S.; Summerfield, A.; Mellor, C. J.; Davies, A.; Khlobystov, A. N.; Eaves, L.; Foxon, C. T.; Beton, P. H.; Novikov, S. V. High-temperature molecular beam epitaxy of hexagonal boron nitride layers. Journal of Vacuum Science & Technology B 2018, 36 (2), 02D103.

(40) He, Q.; Li, P.; Wu, Z.; Yuan, B.; Luo, Z.; Yang, W.; Liu, J.; Cao, G.; Zhang, W.; Shen, Y.et al.

Molecular Beam Epitaxy Scalable Growth of Wafer-Scale Continuous Semiconducting Monolayer MoTe2 on Inert Amorphous Dielectrics. Adv. Mater. 2019, 31 (32), 1901578.

(41) Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.;

Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe 2 : a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Materials 2015, 2 (3), 034004.

167

(42) Hu, B.; Ago, H.; Ito, Y.; Kawahara, K.; Tsuji, M.; Magome, E.; Sumitani, K.; Mizuta, N.; Ikeda, K.-i.; Mizuno, S. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 2012, 50 (1), 57.

(43) Li, H.; Li, Y.; Aljarb, A.; Shi, Y.; Li, L.-J. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chem.

Rev. 2018, 118 (13), 6134.

(44) N'Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 2008, 10 (4), 16.

(45) Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up Growth of Epitaxial Graphene on 6H-SiC(0001). ACS Nano 2008, 2 (12), 2513.

(46) Yang, P. C.; Prater, J. T.; Liu, W.; Glass, J. T.; Davis, R. F. The formation of epitaxial hexagonal boron nitride on nickel substrates. J. Electron. Mater. 2005, 34 (12), 1558.

(47) Jichen, D.; Feng, D. The epitaxy of 2D materials growth. Research Square 2020, DOI:10.21203/rs.3.rs-40179/v1 10.21203/rs.3.rs-40179/v1.

(48) Markov, I.; Stoyanov, S. Mechanisms of epitaxial growth. Contemporary Physics 1987, 28 (3), 267.

(49) Pashley, D. W. The nucleation, growth, structure and epitaxy of thin surface films. Advances in Physics 1965, 14 (55), 327.

(50) Kim, Y.-I.; Si, W.; Woodward, P. M.; Sutter, E.; Park, S.; Vogt, T. Epitaxial Thin-Film Deposition and Dielectric Properties of the Perovskite Oxynitride BaTaO2N. Chem. Mater.

2007, 19 (3), 618.

(51) In Surface and Interface Science, 2013, DOI:10.1002/9783527680566.ch20 10.1002/9783527680566.ch20.

(52) Hull, R.; Bean, J. C. Misfit dislocations in lattice-mismatched epitaxial films. Crit. Rev. Solid State Mater. Sci. 1992, 17 (6), 507.

(53) Chambers, S. A. Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 2000, 39 (5), 105.

(54) Moridi, A.; Ruan, H.; Zhang, L. C.; Liu, M. Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations. International Journal of Solids and Structures 2013, 50 (22), 3562.

(55) Yamauchi, R.; Hamasaki, Y.; Shibuya, T.; Saito, A.; Tsuchimine, N.; Koyama, K.; Matsuda, A.; Yoshimoto, M. Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates. Sci. Rep. 2015, 5 (1), 14385.

(56) Deng, J.; Dong, K.; Yang, P.; Peng, Y.; Ju, G.; Hu, J.; Chow, G. M.; Chen, J. Large lattice mismatch effects on the epitaxial growth and magnetic properties of FePt films. Journal of Magnetism and Magnetic Materials 2018, 446, 125.

168

(57) Li, G.; Zhang, Y.-Y.; Guo, H.; Huang, L.; Lu, H.; Lin, X.; Wang, Y.-L.; Du, S.; Gao, H.-J.

Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chem. Soc. Rev. 2018, 47 (16), 6073.

(58) Kondo, D.; Hayashi, K.; Kataoka, M.; Iwai, T.; Sato, S. 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), 2016; p 1.

(59) Davies, A.; Albar, J. D.; Summerfield, A.; Thomas, J. C.; Cheng, T. S.; Korolkov, V. V.;

Stapleton, E.; Wrigley, J.; Goodey, N. L.; Mellor, C. J.et al. Lattice-Matched Epitaxial Graphene Grown on Boron Nitride. Nano Lett. 2018, 18 (1), 498.

(60) Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93 (11), 113103.

(61) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils.

Science 2009, 324 (5932), 1312.

(62) Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.;

Ohta, T.; Reshanov, S. A.; Röhrl, J.et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203.

(63) Reina, A.; Thiele, S.; Jia, X.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J.

Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2 (6), 509.

(64) Sutter, E.; Albrecht, P.; Sutter, P. Graphene growth on polycrystalline Ru thin films. Appl. Phys.

Lett. 2009, 95 (13), 133109.

(65) Lee, S.; Lee, K.; Zhong, Z. Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition. Nano Lett. 2010, 10 (11), 4702.

(66) Wu, T.; Zhang, X.; Yuan, Q.; Xue, J.; Lu, G.; Liu, Z.; Wang, H.; Wang, H.; Ding, F.; Yu, Q.et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15 (1), 43.

(67) Jin, S.; Huang, M.; Kwon, Y.; Zhang, L.; Li, B.-W.; Oh, S.; Dong, J.; Luo, D.; Biswal, M.;

Cunning, B. V.et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 2018, DOI:10.1126/science.aao3373 10.1126/science.aao3373.

(68) Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H.et al. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science 2014, 344 (6181), 286.

(69) Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.et al.

Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull.

2017, 62 (15), 1074.

169

(70) Kumar, A.; Huei, C. Synthesis and Biomedical Applications of Graphene: Present and Future Trends. 2013, DOI:10.5772/55728 10.5772/55728.

(71) Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano 2012, 6 (10), 9110.

(72) Li, X.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133 (9), 2816.

(73) Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.;

Fallahazad, B.et al. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 2013, 342 (6159), 720.

(74) Braeuninger-Weimer, P.; Brennan, B.; Pollard, A. J.; Hofmann, S. Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging. Chem. Mater. 2016, 28 (24), 8905.

(75) Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N.et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 2018, 17 (4), 318.

(76) Dai, J.; Wang, D.; Zhang, M.; Niu, T.; Li, A.; Ye, M.; Qiao, S.; Ding, G.; Xie, X.; Wang, Y.et al. How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface. Nano Lett.

2016, 16 (5), 3160.

(77) Deng, B.; Pang, Z.; Chen, S.; Li, X.; Meng, C.; Li, J.; Liu, M.; Wu, J.; Qi, Y.; Dang, W.et al.

Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano 2017, 11 (12), 12337.

(78) Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.;

Ding, F.; Jeong, H. Y.; Shin, H. S.et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27 (8), 1376.

(79) Wang, Z.-J.; Dong, J.; Li, L.; Dong, G.; Cui, Y.; Yang, Y.; Wei, W.; Blume, R.; Li, Q.; Wang, L.et al. The Coalescence Behavior of Two-Dimensional Materials Revealed by Multiscale In Situ Imaging during Chemical Vapor Deposition Growth. ACS Nano 2020, DOI:10.1021/acsnano.9b08221 10.1021/acsnano.9b08221.

(80) Li, J.; Li, Y.; Yin, J.; Ren, X.; Liu, X.; Jin, C.; Guo, W. Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation. Small 2016, 12 (27), 3645.

(81) Li, P.; Wei, W.; Zhang, M.; Mei, Y.; Chu, P. K.; Xie, X.; Yuan, Q.; Di, Z. Wafer-scale growth of single-crystal graphene on vicinal Ge(001) substrate. Nano Today 2020, 34, 100908.