• Tidak ada hasil yang ditemukan

76

77

conventional approaches such as factor analysis or linear dynamical systems. These findings suggest that supervised learning methods could extract more beneficial information oriented to kinematics from neural population activity rather than unsupervised learning methods. In the third study, described in Chapter 4, I proposed a new approach to finding kinematics-dependent latent factors from M1 population activity, combining intrinsic latent factors and diverse kinematic variables: velocity, acceleration, speed, and jerk. I also investigated the effects of the kinematics-dependent latent factors on neural trajectories, which explicitly reflect movement status by jPCA, and a simple decoding model.

As a result, it revealed that the kinematics-dependent latent factors more clearly stand out kinematic information compared to the other neural representations obtained by conventional approaches: FA, GPFA, and LFADS. It also showed that kinematics-dependent latent factors yield better decoding performance than the other neural representations. These findings suggest that kinematics-dependent latent factors could provide a new means of finding neural representations for motor decoding alternative to unsupervised learning methods.

Despite the interesting findings demonstrated in this dissertation, it should be noted that these studies have several limitations to consider. In the first study, I dealt with only an aspect of directional decoding, excluding other kinematic parameters such as position, velocity, acceleration, and jerk. Also, not using real data to investigate the effects of neuronal ensemble properties on decoding models may be a critical issue for comparing realistic decoding condition. Thus, I should consider investigating neuronal ensemble properties for diverse kinematic variables and using real data for the validity of the simulation study. In the second and third studies, I did not examine the effectiveness of the latent factors on online BMIs. So, clinical verification is not available yet. However, since one of the key factors for clinical demands in BMIs is reliable decoding performance, our approach might be advantageous even for clinical BMIs. In addition, considering clinical conditions where actual arm movements are often not available in patients with paralysis, one can build virtual object movements for BMI training through the investigation of which kinematic variables adequately describe latent factors given on a day. It will make BMI training and motor decoding more effective according to kinematics-related neural information available on the day.

One of the key aspects representing the temporal evolution of noisy neural population activity is the dynamical system. The dynamical systems suggest feasibility for BMI decoder under the assumption that motor decoding models consider only movement-related factors, even if movements are not the only factor affecting M1 population activity. Recent studies have dealt with decoding approaches to finding neural representations, combining latent factors and their dynamics [10], [164]. The notable advantage of these approaches is that modeling latent factors can further clarify movement-related information, considering various effects on neural activity. It also enables estimating more natural movements because the noise of high-dimensional neuronal population activity is minimized. These

78

studies commonly follow the assumptions that dynamical systems could trace the temporal evolution of M1 neural states. Hence, I will pursue low noise neural representations for BMIs, considering the kinematics-dependent latent factors in the dynamic perspective.

Another advantage of the dynamical systems is that low-dimensional neural representations could be reliably shared between sessions with different recording conditions [41], [165]. However, occurring neuronal loss and small movements of electrodes over time cause decoding instability in the actual BMI [166]–[168]. Although many studies are being attempted to overcome these problems [72], [169], [170], it remains challenging to stably maintain the kinematic information in the initially recorded neural structures under new recording conditions while meeting the clinical requirements for high- performance neural prostheses. Dynamical systems of the intrinsic neural states could be useful for mapping to low-dimensional neural dynamics of the other ensemble structures [171], [172]. Therefore, I will seek an approach that enables stable decoding performance between sessions recorded independently by establishing the dynamical properties of kinematics-dependent latent factors.

Finally, this dissertation has demonstrated that kinematics-dependent latent factors can be successfully decoded to predict various kinematic variables in M1 neuronal ensemble of the NHP brain.

The findings suggest that our approach can guarantee high decoding performance of predicting arm movements. Therefore, I would like to underline that our current approach may be extended to extract specific neural representations related to any behavioral covariates, including cognitive and sensory functions, which would promise to offer a useful means to explore neural mechanisms of behavior on a single-trial basis.

79

LIST OF REFERENCES

[1] K. V. Shenoy, M. M. Churchland, G. Santhanam, B. M. Yu, and S. I. Ryu, “Influence of movement speed on plan activity in monkey pre-motor cortex and implications for high- performance neural prosthetic system design,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat.

No.03CH37439), 2003, pp. 1897–1900, doi: 10.1109/iembs.2003.1279791.

[2] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature, vol. 453, no. 7198, pp. 1098–1101, 2008, doi:

10.1038/nature06996.

[3] J. L. Collinger et al., “High-performance neuroprosthetic control by an individual with tetraplegia,” Lancet, vol. 381, no. 9866, pp. 557–564, 2013, doi: 10.1016/S0140- 6736(12)61816-9.

[4] J. P. Donoghue, “Connecting cortex to machines: Recent advances in brain interfaces,” Nat.

Neurosci., vol. 5, no. 11s, pp. 1085–1088, 2002, doi: 10.1038/nn947.

[5] V. Gilja et al., “A high-performance neural prosthesis enabled by control algorithm design,”

Nat. Neurosci., vol. 15, no. 12, pp. 1752–1757, 2012, doi: 10.1038/nn.3265.

[6] P. K. Artemiadis, G. Shakhnarovich, C. Vargas-Irwin, J. P. Donoghue, and M. J. Black,

“Decoding grasp aperture from motor-cortical population activity,” Proc. 3rd Int. IEEE EMBS Conf. Neural Eng., pp. 518–521, 2007, doi: 10.1109/CNE.2007.369723.

[7] L. R. Hochberg et al., “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164–171, 2006, doi: 10.1038/nature04970.

[8] B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani,

“Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity,” J. Neurophysiol., vol. 102, no. 1, pp. 614–635, 2009, doi:

10.1152/jn.90941.2008.

[9] C. Pandarinath et al., “Inferring single-trial neural population dynamics using sequential auto- encoders,” Nat. Methods, vol. 15, no. 10, pp. 805–815, 2018, doi: 10.1038/s41592-018-0109- 9.

[10] J. C. Kao, P. Nuyujukian, S. I. Ryu, M. M. Churchland, J. P. Cunningham, and K. V. Shenoy,

“Single-trial dynamics of motor cortex and their applications to brain-machine interfaces,”

Nat. Commun., vol. 6, no. May, pp. 1–12, 2015, doi: 10.1038/ncomms8759.

[11] B WodlingerB Wodlinger, J. E. Downey, E C Tyler-Kabara, A B Schwartz, M. L. Boninger, and J. L. Collinger, “Ten-dimensional anthropomorphic arm control in a human

brain−machine interface: difficulties, solutions, and limitations,” J. Neural Eng., vol. 12, no. 1, p. 016011, 2015, doi: 10.1088/1741-2560/12/1/016011.

[12] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, “Neuronal Population Coding of Movement Direction,” Science (80-. )., vol. 233, no. 4771, pp. 1416–1419, 1986.

[13] A. B. Schwartz, D. M. Taylor, and S. I. H. Tillery, “Extraction algorithms for cortical control of arm prosthetics,” Curr. Opin. Neurobiol., vol. 11, no. 6, pp. 701–708, 2001, doi:

10.1016/S0959-4388(01)00272-0.

[14] S. M. Chase, A. B. Schwartz, and R. E. Kass, “Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms,” Neural Networks, vol. 22, no. 9, pp. 1203–1213, 2009, doi: 10.1016/j.neunet.2009.05.005.

80

[15] S. Koyama, S. M. Chase, A. S. Whitford, M. Velliste, A. B. Schwartz, and R. E. Kass,

“Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control,” J. Comput. Neurosci., vol. 29, no. 1–2, pp. 73–87, 2010, doi: 10.1007/s10827-009- 0196-9.

[16] E. Salinas and L. F. Abbott, “Vector reconstruction from firing rates,” J. Comput. Neurosci., vol. 1, pp. 89–107, 1994, doi: 10.1007/BF00962720.

[17] W. Wu, M. J. Black, Y. Gao, E. Bienenstock, M. D. Serruya, and J. P. Donoghue, “Inferring hand motion from multi-cell recordings in motor cortex using a Kalman Filter,” SAB’02- Work. Mot. Control Humans Robot. Interplay Real Brains Artif. Devices, pp. 66–73, 2002.

[18] V. Manfredi, S. Mahadevan, and J. Kurose, “Switching Kalman filters for prediction and tracking in an adaptive meteorological sensing network,” 2005 Second Annu. IEEE Commun.

Soc. Conf. Sens. AdHoc Commun. Networks, SECON 2005, vol. 2005, no. C, pp. 197–206, 2005, doi: 10.1109/SAHCN.2005.1557075.

[19] M. D. Golub, B. M. Yu, A. B. Schwartz, and S. M. Chase, “Motor cortical control of

movement speed with implications for brain-machine interface control,” J. Neurophysiol., vol.

112, no. 2, pp. 411–429, 2014, doi: 10.1152/jn.00391.2013.

[20] J. M. Carmena et al., “Learning to control a brain-machine interface for reaching and grasping by primates,” PLoS Biol., vol. 1, no. 2, pp. 193–208, 2003, doi: 10.1371/journal.pbio.0000042.

[21] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Instant neural control of a movement signal,” Nature, vol. 416, no. 6877, pp. 141–142, 2002, doi:

10.1038/416141a.

[22] M. M. Churchland, A. Afshar, and K. V. Shenoy, “A Central Source of Movement

Variability,” Neuron, vol. 52, no. 6, pp. 1085–1096, 2006, doi: 10.1016/j.neuron.2006.10.034.

[23] E. E. Fetz, “Are movement parameters recognizably coded in the activity of single neurons?,”

Behav. Brain Sci., vol. 15, no. 4, pp. 679–690, 1992, doi:

doi.org/10.1017/S0140525X00072599.

[24] G. Santhanam et al., “Factor-analysis methods for higher-performance neural prostheses,” J.

Neurophysiol., vol. 102, no. 2, pp. 1315–1330, 2009, doi: 10.1152/jn.00097.2009.

[25] M. M. Churchland et al., “Neural population dynamics during reaching,” Nature, vol. 487, no.

7405, pp. 51–56, 2012, doi: 10.1038/nature11129.

[26] J. P. Cunningham and B. M. Yu, “Dimensionality reduction for large-scale neural recordings,”

Nat. Neurosci., vol. 17, no. 11, pp. 1500–1509, 2014, doi: 10.1038/nn.3776.

[27] J. A. Gallego, M. G. Perich, L. E. Miller, and S. A. Solla, “Neural Manifolds for the Control of Movement,” Neuron, vol. 94, no. 5, pp. 978–984, 2017, doi: 10.1016/j.neuron.2017.05.025.

[28] C. Pandarinath et al., “Latent factors and dynamics in motor cortex and their application to brain–machine interfaces,” J. Neurosci., vol. 38, no. 44, pp. 9390–9401, 2018, doi:

10.1523/JNEUROSCI.1669-18.2018.

[29] M. G. Perich et al., “Motor cortical dynamics are shaped by multiple distinct subspaces during naturalistic behavior,” bioRxiv, p. 2020.07.30.228767, 2020, [Online]. Available:

https://doi.org/10.1101/2020.07.30.228767.

[30] K. C. Ames, S. I. Ryu, and K. V. Shenoy, “Neural dynamics of reaching following incorrect or absent motor preparation,” Neuron, vol. 81, no. 2, pp. 438–451, 2014, doi:

10.1016/j.neuron.2013.11.003.

[31] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black, “Bayesian population

81

decoding of motor cortical activity using a Kalman filter.,” Neural Comput., vol. 18, no. 1, pp.

80–118, 2006, doi: 10.1162/089976606774841585.

[32] W. Wu, M. J. Black, D. Mumford, Y. Gao, E. Bienenstock, and J. P. Donoghue, “Modeling and Decoding Motor Cortical Activity using a Switching Kalman Filter,” IEEE Trans. Biomed.

Eng., vol. 51, no. 6, pp. 933–942, 2004, doi: 10.1109/TBME.2004.826666.

[33] G. Andrew;, R. Aroral;, J. Bilmes;, and K. Livescu, “Deep Canonical Correlation Analysis,” in Proceedings of the 30th International Conference on Machine Learning, 2013, vol. 28, pp.

1247–1255.

[34] P. T. Sadtler et al., “Neural constraints on learning,” Nature, vol. 512, no. 7515, pp. 423–426, 2014, doi: 10.1038/nature13665.

[35] M. T. Kaufman, M. M. Churchland, S. I. Ryu, and K. V. Shenoy, “Cortical activity in the null space: Permitting preparation without movement,” Nat. Neurosci., vol. 17, pp. 440–448, 2014, doi: 10.1038/nn.3643.

[36] H. Vu, B. Koo, and S. Choi, “Frequency detection for SSVEP-based BCI using deep canonical correlation analysis,” in 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2016, pp. 001983–001987.

[37] M.-K. Kim, J.-W. Sohn, and S.-P. Kim, “Decoding kinematic information from primary motor cortex ensemble activities using a deep canonical correlation analysis,” Front. Neurosci., vol.

14, no. 509364, pp. 1–16, 2020, doi: doi.org/10.3389/fnins.2020.509364.

[38] E. C. Leuthardt, K. J. Miller, G. Schalk, R. P. N. Rao, and J. G. Ojemann,

“Electrocorticography-based brain computer interface--the Seattle experience,” IEEE Trans.

Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 194–198, 2006, doi:

10.1109/TNSRE.2006.875536.

[39] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–

computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, no. 6, pp.

767–791, 2002, doi: doi.org/10.1016/S1388-2457(02)00057-3.

[40] A. K. Bansal, W. Truccolo, C. E. Vargas-Irwin, and J. P. Donoghue, “Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: Spikes, multiunit activity, and local field potentials,” J. Neurophysiol., vol. 107, no. 5, pp. 1337–1355, 2012, doi:

10.1152/jn.00781.2011.

[41] J. E. Downey, N. Schwed, S. M. Chase, A. B. Schwartz, and J. L. Collinger, “Intracortical recording stability in human brain-computer interface users,” J. Neural Eng., vol. 15, no. 4, 2018, doi: 10.1088/1741-2552/aab7a0.

[42] G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar, and K. V. Shenoy, “A high-performance brain- computer interface,” Nature, vol. 442, no. 7099, pp. 195–198, 2006, doi: 10.1038/nature04968.

[43] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical control of 3D neuroprosthetic devices,” Science (80-. )., vol. 296, no. 5574, pp. 1829–32, 2002, doi:

10.1126/science.1070291.

[44] J. Wessberg et al., “Real-time prediction of hand trajectory by ensembles of cortical neurons in primates,” Nature, vol. 408, no. 6810, pp. 361–365, 2000, doi: 10.1038/35042582.

[45] G. T. Einevoll, F. Franke, E. Hagen, C. Pouzat, and K. D. Harris, “Towards reliable spike-train recordings from thousands of neurons with multielectrodes,” Curr. Opin. Neurobiol., vol. 22, no. 1, pp. 11–17, 2012, doi: 10.1016/j.conb.2011.10.001.

[46] K. D. Harris, R. Q. Quiroga, J. Freeman, and S. L. Smith, “Improving data quality in neuronal

82

population recordings,” Nat. Neurosci., vol. 19, pp. 1165–1174, 2016, doi: 10.1038/nn.4365.

[47] M. S. Lewicki, “A review of methods for spike sorting: The detection and classification of neural action potentials,” Netw. Comput. Neural Syst., vol. 9, no. 4, pp. 53–78, 1998, doi:

10.1088/0954-898X_9_4_001.

[48] R. Q. Quiroga, “Spike sorting,” Curr. Biol., vol. 22, no. 2, pp. 45–46, 2012, doi:

10.1016/j.cub.2011.11.005.

[49] D. H. Hubel, “Tungsten microelectrode for recording from single units,” Science (80-. )., vol.

125, no. 3247, pp. 549–550, 1957, doi: 10.1126/science.125.3247.549.

[50] M. Meister, J. Pine, and D. A. Baylor, “Multi-neuronal signals from the retina: acquisition and analysis,” J. Neurosci. Methods, 1994, doi: 10.1016/0165-0270(94)90030-2.

[51] C. Pouzat, O. Mazor, and G. Laurent, “Using noise signature to optimize spike-sorting and to assess neuronal classification quality,” J. Neurosci. Methods, vol. 122, no. 1, pp. 43–57, 2002, doi: 10.1016/S0165-0270(02)00276-5.

[52] N. V. Swindale and M. A. Spacek, “Spike sorting for polytrodes: A divide and conquer approach,” Front. Syst. Neurosci., vol. 8, no. 6, pp. 1–21, 2014, doi:

10.3389/fnsys.2014.00006.

[53] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering,” Neural Comput., vol. 16, no. 8, pp. 1661–1687, 2004, doi: 10.1162/089976604774201631.

[54] F. Wood, M. J. Black, C. Vargas-Irwin, M. Fellows, and J. P. Donoghue, “On the variability of manual spike sorting,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 912–918, 2004, doi:

10.1109/TBME.2004.826677.

[55] C. Rossant et al., “Spike sorting for large, dense electrode arrays,” Nat. Neurosci., vol. 19, pp.

634–641, 2016, doi: 10.1038/nn.4268.

[56] A. F. Atiya, “Recognition of Multiunit Neural Signals,” IEEE Trans. Biomed. Eng., vol. 39, no. 7, pp. 723–729, 1992, doi: 10.1109/10.142647.

[57] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “A unified framework and method for automatic neural spike identification,” J. Neurosci. Methods, vol. 222, pp. 47–55, 2014, doi:

10.1016/j.jneumeth.2013.10.001.

[58] F. Franke, M. Natora, C. Boucsein, M. H. J. Munk, and K. Obermayer, “An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes,” J. Comput. Neurosci., vol. 29, pp. 127–148, 2010, doi: 10.1007/s10827-009-0163-5.

[59] S. N. Gozani and J. P. Miller, “Optimal Discrimination and Classification of Neuronal Action Potential Waveforms from Multiunit, Multichannel Recordings Using Software-Based Linear Filters,” IEEE Trans. Biomed. Eng., vol. 41, no. 4, pp. 358–372, 1994, doi:

10.1109/10.284964.

[60] E. N. Brown, D. P. Nguyen, L. M. Frank, M. A. Wilson, and V. Solo, “An analysis of neural receptive field plasticity by point process adaptive filtering,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 21, pp. 12261–12266, 2001, doi: 10.1073/pnas.201409398.

[61] D. Jäckel, U. Frey, M. Fiscella, F. Franke, and A. Hierlemann, “Applicability of independent component analysis on high-density microelectrode array recordings,” J. Neurophysiol., vol.

108, no. 1, pp. 334–348, 2012, doi: 10.1152/jn.01106.2011.

[62] O. Marre et al., “Mapping a complete neural population in the retina,” J. Neurosci., vol. 32, no. 43, pp. 14859–14873, 2012, doi: 10.1523/JNEUROSCI.0723-12.2012.

83

[63] R. D. Flint, E. W. Lindberg, L. R. Jordan, L. E. Miller, and M. W. Slutzky, “Accurate decoding of reaching movements from field potentials in the absence of spikes,” J. Neural Eng., vol. 9, no. 4, 2012, doi: 10.1088/1741-2560/9/4/046006.

[64] P. N. Lawlor, M. G. Perich, L. E. Miller, and K. P. Kording, “Linear-nonlinear-time-warp- poisson models of neural activity,” J. Comput. Neurosci., vol. 45, no. 3, pp. 173–191, 2018, doi: 10.1007/s10827-018-0696-6.

[65] M. G. Perich, P. N. Lawlor, K. P. Kording, and L. E. Miller, “Extracellular neural recordings from macaque primary and dorsal premotor motor cortex during a sequential reaching task,”

2018. crcns.org.http://dx.doi.org/10.6080/K0FT8J72.

[66] S. Perel et al., “Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics,” J. Neurophysiol., vol. 114, no. 3, pp. 1500–

1512, 2015, doi: 10.1152/jn.00293.2014.

[67] J. P. Cunningham, V. Gilja, S. I. Ryu, and K. V. Shenoy, “Methods for estimating neural firing rates, and their application to brain-machine interfaces,” Neural Networks, vol. 22, no. 9, pp.

1235–1246, 2009, doi: 10.1016/j.neunet.2009.02.004.

[68] M. Nawrot, A. Aertsen, and S. Rotter, “Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity,” J. Neurosci. Methods, vol. 94, no. 1, pp. 81–

92, 1999, doi: 10.1016/S0165-0270(99)00127-2.

[69] R. E. Kass, V. Ventura, and E. N. Brown, “Statistical issues in the analysis of neuronal data,”

J. Neurophysiol., vol. 94, no. 1, pp. 8–25, 2005, doi: 10.1152/jn.00648.2004.

[70] L. M. Optican and B. J. Richmond, “Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis,” J. Neurophysiol., vol. 57, no. 1, pp. 162–178, 1987, doi: 10.1152/jn.1987.57.1.162.

[71] B. M. Yu, A. Afshar, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani, “Extracting dynamical structure embedded in neural activity,” Adv. Neural Inf. Process. Syst., pp. 1545–

1552, 2005.

[72] A. D. Degenhart et al., “Stabilization of a brain–computer interface via the alignment of low- dimensional spaces of neural activity,” Nat. Biomed. Eng., vol. 4, no. 7, pp. 672–685, 2020, doi: https://doi.org/10.1038/s41551-020-0542-9.

[73] H. Shimazaki and S. Shinomoto, “A method for selecting the bin size of a time histogram,”

Neural Comput., vol. 19, no. 6, pp. 1503–1527, 2007, doi: 10.1162/neco.2007.19.6.1503.

[74] S. Behseta and R. E. Kass, “Testing equality of two functions using BARS,” Stat. Med., vol.

24, no. 22, pp. 3523–3534, 2005, doi: 10.1002/sim.2195.

[75] I. Dimatteo, C. R. Genovese, and R. E. Kass, “Bayesian curve-fitting with free-knot splines,”

Biometrika, vol. 88, no. 4, pp. 1055–1071, 2001, doi: 10.1093/biomet/88.4.1055.

[76] C. G. Kaufman, V. Ventura, and R. E. Kass, “Spline-based non-parametric regression for periodic functions and its applications to directional tuning of neurons,” Stat. Med., vol. 24, no. 14, pp. 2255–2265, 2005, doi: 10.1002/sim.2104.

[77] M. N. Shadlen and W. T. Newsome, “Noise, neural codes and cortical organization,” Curr.

Opin. Neurobiol., vol. 4, no. 4, pp. 569–579, 1994, doi: 10.1016/0959-4388(94)90059-0.

[78] D. A. Butts et al., “Temporal precision in the neural code and the timescales of natural vision,”

Nature, vol. 449, pp. 92–95, 2007, doi: 10.1038/nature06105.

[79] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, fourth addition.

2000.

84

[80] K. O. Johnson, “Neural Coding,” Neuron, vol. 26, pp. 563–566, 2000, [Online]. Available:

https://www.cell.com/action/showPdf?pii=S0896-6273%2800%2981193-9.

[81] B. Amirikian and A. P. Georgopulos, “Directional tuning profiles of motor cortical cells,”

Neurosci. Res., vol. 36, no. 1, pp. 73–79, 2000, doi: 10.1016/S0168-0102(99)00112-1.

[82] A. B. Schwartz, D. W. Kipke, and P. D. Perepelkin, “Cortical control for prosthetic devices,”

Proc. SPIE, vol. 2718, pp. 530–539, 1996, doi: 10.1117/12.240891.

[83] A. B. Schwartz, “Motor cortical activity during drawing movements: Single-unit activity during sinusoid tracing,” J. Neurophysiol., vol. 68, no. 2, pp. 528–541, 1992, doi:

10.1152/jn.1992.68.2.528.

[84] J. M. Carmena, M. A. Lebedev, C. S. Henriquez, and M. A. L. Nicolelis, “Stable ensemble performance with single-neuron variability during reaching movements in primates,” J.

Neurosci., vol. 25, no. 46, pp. 10712–10716, 2005, doi: 10.1523/JNEUROSCI.2772-05.2005.

[85] C. A. Chestek et al., “Single-neuron stability during repeated reaching in macaque premotor cortex,” J. Neurosci., vol. 27, no. 40, pp. 10742–10750, 2007, doi:

10.1523/JNEUROSCI.0959-07.2007.

[86] A. Afshar, G. Santhanam, B. M. Yu, S. I. Ryu, M. Sahani, and K. V. Shenoy, “Single-trial neural correlates of arm movement preparation,” Neuron, vol. 71, no. 3, pp. 555–564, 2011, doi: 10.1016/j.neuron.2011.05.047.

[87] F. Carnevale, V. DeLafuente, R. Romo, O. Barak, and N. Parga, “Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal

Uncertainty,” Neuron, vol. 86, no. 4, pp. 1067–1077, 2015, doi: 10.1016/j.neuron.2015.04.014.

[88] J. A. Gallego, M. G. Perich, R. H. Chowdhury, S. A. Solla, and L. E. Miller, “Long-term stability of cortical population dynamics underlying consistent behavior,” Nat. Neurosci., vol.

23, pp. 260–270, 2020, doi: 10.1038/s41593-019-0555-4.

[89] K. V. Shenoy, M. Sahani, and M. M. Churchland, “Cortical control of arm movements: A dynamical systems perspective,” Annu. Rev. Neurosci., vol. 36, pp. 337–359, 2013, doi:

10.1146/annurev-neuro-062111-150509.

[90] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemom. Intell. Lab.

Syst., vol. 2, pp. 37–52, 1987, doi: 10.1016/0169-7439(87)80084-9.

[91] M. Velliste, S. D. Kennedy, A. B. Schwartz, A. S. Whitford, J.-W. Sohn, and A. J. C.

McMorland, “Motor Cortical Correlates of Arm Resting in the Context of a Reaching Task and Implications for Prosthetic Control,” J. Neurosci., vol. 34, no. 17, pp. 6011–6022, 2014, doi: 10.1523/JNEUROSCI.3520-13.2014.

[92] S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with

tetraplegia,” J. Neural Eng., vol. 5, no. 4, pp. 455–476, 2008, doi: 10.1088/1741-2560/5/4/010.

[93] M. Velliste, S. Perel, M. C. Spalding, a S. Whitford, and a B. Schwartz, “Cortical control of a robotic arm for self-feeding,” Nature, vol. 453, no. 7198, pp. 1098–1101, 2008, doi:

10.1038/nature06996.

[94] L. R. Hochberg et al., “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature, vol. 485, pp. 372–375, 2012, doi: 10.1038/nature11076.

[95] X. Zheng, “An adaptive estimation of forecast error covariance parameters for Kalman filtering data assimilation,” Adv. Atmos. Sci., vol. 26, no. 1, pp. 154–160, 2009, doi:

10.1007/s00376-009-0154-5.

85

[96] W. Shain et al., “Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 2, pp. 186–188, 2003, doi: 10.1109/TNSRE.2003.814800.

[97] S. P. Kim, M. K. Kim, and G. T. Park, “A simulation study on the generative neural ensemble decoding algorithms,” in Proceedings - International Conference on Pattern Recognition, 2010, pp. 3797–3800, doi: 10.1109/ICPR.2010.925.

[98] J. P. Donoghue, J. N. Sanes, N. G. Hatsopoulos, and G. Gaál, “Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements,” J. Neurophysiol., vol. 79, no. 1, pp. 159–73, 1998, doi: doi.org/10.1152/jn.1998.79.1.159.

[99] S. Waldert, T. Pistohl, C. Braun, T. Ball, A. Aertsen, and C. Mehring, “A review on directional information in neural signals for brain-machine interfaces,” J. Physiol. Paris, vol. 103, no. 3–

5, pp. 244–254, 2009, doi: 10.1016/j.jphysparis.2009.08.007.

[100] C. Chestek et al., “Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex.,” J. Neural Eng., vol. 8, no. 4, p. 045005, 2011, doi:

10.1088/1741-2560/8/4/045005.

[101] I. H. Stevenson et al., “Statistical assessment of the stability of neural movement representations,” J. Neurophysiol., vol. 106, no. 2, pp. 764–774, 2011, doi:

10.1152/jn.00626.2010.

[102] J. F. Kalaska, R. Caminiti, and A. P. Georgopoulos, “Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex,” Exp. Brain Res., vol. 51, no. 2, pp. 247–260, 1983, doi: 10.1007/BF00237200.

[103] S.-P. Kim et al., “A comparison of optimal MIMO linear and nonlinear models for brain- machine interfaces.,” J. Neural Eng., vol. 3, no. 2, pp. 145–61, 2006, doi: 10.1088/1741- 2560/3/2/009.

[104] P. H. Franses, “A method to select between Gompertz and logistic trend curves,” Technol.

Forecast. Soc. Change, vol. 46, no. 1, pp. 45–49, 1994, doi: 10.1016/0040-1625(94)90016-7.

[105] P. H. Franses, “Fitting a Gompertz curve,” J. Oper. Res. Soc., vol. 45, no. 1, pp. 109–113, 1994, doi: 10.1057/jors.1994.11.

[106] J. H. Zar, “Power of statistical testing: hypotheses about means,” Am. Lab., vol. 13, pp. 102–

107, 1981.

[107] K. V. Mardia and P. E. Jupp, Directional Statistics. Wiley, 2008.

[108] J. P. Cunningham, B. M. Yu, V. Gilja, S. I. Ryu, and K. V. Shenoy, “Toward Optimal Target Placement for Neural Prosthetic Devices,” J. Neurophysiol., vol. 100, no. 6, pp. 3445–3457, 2008, doi: 10.1152/jn.90833.2008.

[109] M. A. Lebedev, “How to read neuron-dropping curves?,” Front. Syst. Neurosci., vol. 8, 2014, doi: 10.3389/fnsys.2014.00102.

[110] C. E. Vargas-Irwin, G. Shakhnarovich, P. Yadollahpour, J. M. K. Mislow, M. J. Black, and J.

P. Donoghue, “Decoding complete reach and grasp actions from local primary motor cortex populations,” J. Neurosci., vol. 30, no. 29, pp. 9659–9669, 2010, doi:

10.1523/JNEUROSCI.5443-09.2010.

[111] V. Aggarwal et al., “Asynchronous decoding of dexterous finger movements using M1 neurons,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 1, pp. 3–14, 2008, doi:

10.1109/TNSRE.2007.916289.

[112] A. B. Schwartz, “Useful signals from motor cortex,” J. Physiol., vol. 579, no. 3, pp. 581–601,