• Tidak ada hasil yang ditemukan

Conclusions

Dalam dokumen Solid Oxide Fuel Cells (Halaman 60-66)

Chapter 3. Scandium Doping Effect on the Layered Perovskite Cathode for Low-temperature

3.4. Conclusions

48

Figure 3.7. I–V and corresponding power density curves of single cells (Cathode / GDC / Ni-GDC) in a temperature range of 450 to 550 oC: (a) PBCO, (b) PBCSc and (c) SP-PBCSc, respectively.

Figure. 3.7 presents the current-voltage (I-V) curves and corresponding power density curves for the cathode / GDC / Ni-GDC cell using humidified H2 and air, as a fuel and oxidant, respectively. As expected from the lower ASR value of PBCSc, PBCSc exhibits excellent maximum power densities of 1.3 and 0.73 W cm-2 at 550 and 500 oC, respectively and those are ~1.5 times higher than those of PBCO.

49 References

[1] M. Winter and R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?,” Chem. Rev., vol. 104, no. 10, pp. 4245–4269, 2004.

[2] S. Sengodan et al., “Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells,” Nat. Mater., vol. 14, no. 2, pp. 205–209, 2014.

[3] M. Mogensen, K. V. Jensen, M. J. Jorgensen, and S. Primdahl, “Progress in understanding SOFC electrodes,” Solid State Ionics, vol. 150, no. 1–2, pp. 123–129, 2002.

[4] S. Choi et al., “Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).,” Sci. Rep., vol. 3, p. 2426, 2013.

[5] S. Park, J. Vohs, and R. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell,”

Nature, vol. 404, no. 6775, pp. 265–7, 2000.

[6] S. Tao and J. T. S. Irvine, “A redox-stable efficient anode for solid-oxide fuel cells,” Nat.

Mater., vol. 2, no. 5, pp. 320–323, 2003.

[7] N. Q. Minh, “Ceramic Fuel Cells,” J. Am. Ceram. Soc., vol. 76, no. 3, pp. 563–588, 1993.

[8] M. D. Gross, J. M. Vohs, and R. J. Gorte, “Recent progress in SOFC anodes for direct utilization of hydrocarbons,” J. Mater. Chem., vol. 17, p. 3071, 2007.

[9] E. D. Wachsman and K. T. Lee, “Lowering the Temperature of Solid Oxide Fuel Cells,”

Science (80-. )., vol. 334, no. 6058, pp. 935–939, 2011.

[10] S. Yoo et al., “Development of double-perovskite compounds as cathode materials for low- temperature solid oxide fuel cells.,” Angew. Chem. Int. Ed. Engl., vol. 53, no. 48, pp. 13064–7, 2014.

[11] W. Jung, K. L. Gu, Y. Choi, and S. M. Haile, “Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes,” Energy Environ.

Sci., vol. 7, no. 5, pp. 1685–1692, 2014.

[12] G. Kim et al., “Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films,” Appl. Phys.

Lett., vol. 88, no. 2, p. 24103, 2006.

[13] A. J. Jacobson, “Materials for solid oxide fuel cells,” Chemistry of Materials, vol. 22, no. 3. pp.

660–674, 2010.

50

[14] G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen, and C. A. Mims, “Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations,” Journal of Materials Chemistry, vol. 17, no. 24. p. 2500, 2007.

[15] A. Tarancon, S. J. Skinner, R. J. Chater, F. Hernandez-Ramirez, and J. A. Kilner, “Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells,” J.

Mater. Chem., vol. 17, no. 30, pp. 3175–3181, 2007.

[16] J.-H. Kim and A. Manthiram, “Layered LnBaCo2O5+δ Perovskite Cathodes for Solid Oxide Fuel Cells: An Overview and Perspective,” J. Mater. Chem. A, vol. 3, pp. 24195–24210, 2015.

[17] S. Yoo et al., “Development of Double-Perovskite Compounds as Cathode Materials for Low- Temperature Solid Oxide Fuel Cells,” Angew. Chemie Int. Ed., vol. 53, no. 48, pp. 13064–

13067, Nov. 2014.

[18] A. A. Taskin, A. N. Lavrov, and Y. Ando, “Achieving fast oxygen diffusion in perovskites by cation ordering,” Appl. Phys. Lett., vol. 86, no. 9, pp. 1–3, 2005.

[19] A. A. Taskin, a. N. Lavrov, and Y. Ando, “Fast oxygen diffusion in A-site ordered perovskites,” Prog. Solid State Chem., vol. 35, pp. 481–490, 2007.

[20] S. Yoo, J. Y. Shin, and G. Kim, “Thermodynamic and Electrical Properties of Layered Perovskite NdBaCo2−xFexO5+δ−YSZ (x = 0, 1) Composites for Intermediate Temperature SOFC Cathodes,” J. Electrochem. Soc., vol. 158, no. 6, p. B632, 2011.

[21] S. Yoo, T.-H. Lim, J. Shin, and G. Kim, “Comparative characterization of thermodynamic, electrical, and electrochemical properties of Sm0.5Sr0.5Co1-xNbxO3-δ (x = 0, 0.05, and 0.1) as cathode materials in intermediate temperature solid oxide fuel cells,” J. Power Sources, vol.

226, pp. 1–7, 2012.

[22] J. Kim, S. Choi, S. Park, C. Kim, J. Shin, and G. Kim, “Effect of Mn on the electrochemical properties of a layered perovskite NdBa0.5Sr0.5Co2−xMnxO5+δ (x=0, 0.25, and 0.5) for

intermediate-temperature solid oxide fuel cells,” Electrochim. Acta, vol. 112, pp. 712–718, Dec. 2013.

[23] A. Jun, T. H. Lim, J. Shin, and G. Kim, “Electrochemical properties of B-site Ni doped layered perovskite cathodes for IT-SOFCs,” Int. J. Hydrogen Energy, vol. 39, no. 35, pp. 20791–

20798, 2014.

[24] J. Kim, A. Jun, J. Shin, and G. Kim, “Effect of Fe Doping on Layered GdBa0.5Sr0.5Co2O5+δ

51

Perovskite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” J. Am. Ceram.

Soc., vol. 97, no. 2, pp. 651–656, Feb. 2014.

[25] A. Jun et al., “Correlation between fast oxygen kinetics and enhanced performance in Fe doped layered perovskite cathodes for solid oxide fuel cells,” J. Mater. Chem. A, vol. 3, no. 29, pp. 15082–15090, 2015.

[26] A. Jun, J. Shin, and G. Kim, “High redox and performance stability of layered

SmBa(0.5)Sr(0.5)Co(1.5)Cu(0.5)O(5+δ) perovskite cathodes for intermediate-temperature solid oxide fuel cells.,” Phys. Chem. Chem. Phys., vol. 15, no. 45, pp. 19906–12, 2013.

[27] X. Chen, L. Huang, Y. Wei, and H. Wang, “Tantalum stabilized SrCoO3-δ perovskite membrane for oxygen separation,” J. Memb. Sci., vol. 368, no. 1–2, pp. 159–164, 2011.

[28] K. Zhang, R. Ran, L. Ge, Z. Shao, W. Jin, and N. Xu, “Systematic investigation on new SrCo1- yNbyO3-δ ceramic membranes with high oxygen semi-permeability,” J. Memb. Sci., vol. 323, no.

2, pp. 436–443, 2008.

[29] X. Li et al., “Scandium-doped PrBaCo2-xScxO6-δ oxides as cathode material for intermediate- temperature solid oxide fuel cells,” Int. J. Hydrogen Energy, vol. 38, no. 27, pp. 12035–12042, 2013.

[30] Y. Shen, F. Wang, X. Ma, and T. He, “SrCo1-yTiyO3-δ as potential cathode materials for intermediate-temperature solid oxide fuel cells,” J. Power Sources, vol. 196, no. 18, pp. 7420–

7425, 2011.

[31] D. Chen, C. Chen, Z. Zhang, Z. M. Baiyee, F. Ciucci, and Z. Shao, “Compositional

engineering of perovskite oxides for highly efficient oxygen reduction reactions,” ACS Appl.

Mater. Interfaces, vol. 7, no. 16, pp. 8562–8571, 2015.

[32] Y. M. Yin et al., “Investigation on thermal, electrical, and electrochemical properties of scandium-doped Pr0.6Sr0.4(Co0.2Fe0.8)(1-x)ScxO3-δ as cathode for IT-SOFC,” Int. J. Hydrogen Energy, vol. 36, no. 6, pp. 3989–3996, 2011.

[33] T. Tsuji, Y. Ohashi, and Y. Yamamura, “Effect of ionic radius on electrical conductivity of doped SmAlO3 perovskite oxide,” Solid State Ionics, vol. 154–155, pp. 541–546, 2002.

[34] D. Lybye, F. W. Poulsen, and M. Mogensen, “Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites,” Solid State Ionics, vol. 128, pp. 91–103, 2000.

52

[35] K. Nomura and S. Tanase, “Electrical conduction behavior in (La0.9Sr0.1)MIIIO3−δ (MIII=Al, Ga, Sc, In, and Lu) perovskites,” Solid State Ionics, vol. 98, no. 3–4, pp. 229–236, 1997.

[36] H. Hayashi, H. Inaba, M. Matsuyama, N. G. Lan, M. Dokiya, and H. Tagawa, “Structural consideration on the ionic conductivity of perovskite-type oxides,” Solid State Ionics, vol. 122, no. 1–4, pp. 1–15, 1999.

[37] S. Švarcová, K. Wiik, J. Tolchard, H. J. M. Bouwmeester, and T. Grande, “Structural

instability of cubic perovskite BaxSr1-xCo1-yFeyO3-δ,” Solid State Ionics, vol. 178, no. 35–36, pp.

1787–1791, 2008.

[38] J. Jung and D. D. Edwards, “Journal of Solid State Chemistry X-ray photoelectron ( XPS ) and Diffuse Reflectance Infra Fourier ( BSCF : x ¼ 0 – 0 . 8 ) ceramics,” J. Solid State Chem., vol.

184, no. 8, pp. 2238–2243, 2011.

[39] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep.

1976.

[40] S. Sengodan, S. Ahn, J. Shin, and G. Kim, “Oxidation–reduction behavior of

La0.8Sr0.2ScyMn1−yO3±δ (y=0.2, 0.3, 0.4): Defect structure, thermodynamic and electrical properties,” Solid State Ionics, vol. 228. Elsevier B.V., pp. 25–31, 2012.

[41] S. McIntosh and R. J. Gorte, “Direct hydrocarbon solid oxide fuel cells,” Chem. Rev., vol. 104, no. 10, pp. 4845–4865, 2004.

[42] R. L. Cook and A. F. Sammells, “On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells,” Solid State Ionics, vol. 45, no. 3–4, pp. 311–321, 1991.

[43] L. Dos Santos-Gómez, J. M. Porras-Vázquez, E. R. Losilla, and D. Marrero-López,

“Improving the efficiency of layered perovskite cathodes by microstructural optimization,” J.

Mater. Chem. A, vol. 5, no. 17, pp. 7896–7904, 2017.

[44] D. Chen, R. Ran, and Z. Shao, “Assessment of PrBaCo2O5+δ+Sm0.2Ce0.8O1.9 composites

prepared by physical mixing as electrodes of solid oxide fuel cells,” J. Power Sources, vol. 195, no. 21, pp. 7187–7195, Nov. 2010.

[45] D. Chen, R. Ran, and Z. Shao, “Effect of firing temperature on the microstructure and performance of PrBaCo2O5+δ cathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes,” J. Power Sources, vol. 195, no. 15, pp. 4667–4675, Aug. 2010.

53

[46] S. Park, S. Choi, J. Kim, J. Shin, and G. Kim, “Strontium Doping Effect on High-Performance PrBa1-xSrxCo2O5+ as a Cathode Material for IT-SOFCs,” ECS Electrochem. Lett., vol. 1, no. 5, pp. F29–F32, Sep. 2012.

[47] S. Adler, J. Lane, and B. Steele, “Electrode kinetics of porous mixed-conducting oxygen electrodes,” J. Electrochem. Soc., vol. 143, no. 11, pp. 3554–3564, 1996.

[48] M. Bevilacqua, T. Montini, C. Tavagnacco, E. Fonda, P. Fornasiero, and M. Graziani,

“Preparation , Characterization , and Electrochemical Properties of Pure and Composite LaNi0.6 Fe0.4O3-Based Cathodes for IT-SOFC,” Chem. Mater., no. 2, pp. 5926–5936, 2007.

[49] A. Jun, J. Kim, J. Shin, and G. Kim, “Optimization of Sr content in layered SmBa1-xSrxCo

2O5+ perovskite cathodes for intermediate-temperature solid oxide fuel cells,” Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 18381–18388, 2012.

54

Chapter 4. Enhancement of Electrochemical Performance by the

Dalam dokumen Solid Oxide Fuel Cells (Halaman 60-66)

Dokumen terkait