• Tidak ada hasil yang ditemukan

Conclusions

Dalam dokumen 1.1 Introduction of quantum dots --- 7 (Halaman 34-45)

This subject provides comprehensive overview of the optical properties of the In1-xGaxP/ZnS CQDs.

The In1-xGaxP/ZnS (0 ≤ x ≤ 1) CQDs are successfully synthesized by hot-injection method and the ZnS shell is synthesized by simple injection of TOP, sulfur solution as a sulfur source. With various structural, elemental, and optical analysis techniques (XRD, ICP-MS, XPS, and TDPL), In1-

31

xGaxP/ZnS CQDs have alloy structure and also they have many defects as Ga ratio increase. The XRD patterns shift gradually from InP to GaP as In/Ga ratio change and so do XPS spectra. Also TEM images show In1-xGaxP/ZnS CQDs have sphere shape and similar particle size that can ignore

quantum confinement effect to analyze In/Ga ratio effect. As a result, the randomization of lattice is a main factor of decreasing PLQY and increasing shoulder peak. At In rich condition, there is no defect induced PL, but as Ga ratio increase, defect induced PL is occur and this can be figure out by TDPL.

32

Figure 3.1 XRD patterns of In1-xGaxP/ZnS CQDs with different In/Ga ratio

30 40 50 60 70 80 90

2θ (degree)

Intensity (a.u)

InP _ PDF Number : 03-065-5740 GaP _ PDF Number : 01-071-4781 (GaIn)P2 _ PDF Number : 01-071-4504

30 40 50 60 70 80 90

Intensity (a.u)

2θ (degree)

InP _ PDF Number : 03-065-5740 GaP _ PDF Number : 01-071-4781 (GaIn)P2 _ PDF Number : 01-071-4504

30 40 50 60 70 80 90

Intensity (a.u)

2θ (degree)

InP _ PDF Number : 03-065-5740 GaP _ PDF Number : 01-071-4781 (GaIn)P2 _ PDF Number : 01-071-4504

30 40 50 60 70 80 90

Intensity (a.u)

InP _ PDF Number : 03-065-5740 GaP _ PDF Number : 01-071-4781 (GaIn)P2 _ PDF Number : 01-071-4504

2θ (degree)

30 40 50 60 70 80 90

2θ (degree)

InP _ PDF Number : 03-065-5740 GaP _ PDF Number : 01-071-4781 (GaIn)P2 _ PDF Number : 01-071-4504

Intensity (a.u)

30 40 50 60 70 80 90

Intensity (a.u)

2θ (degree) InP@ZnS1 In0.75Ga

0.25P@ZnS In0.50Ga0.50P@ZnS In0.25Ga

0.75P@ZnS GaP@ZnS

(a) (b)

(c)

(e)

(d)

(f)

33

Figure 3.2 In/Ga ratio which is measured by ICP-MS

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8

1.0 In

Ga

Ga ratio

In ratio

34

Figure 3.3 HR-TEM image of In1-xGaxP/ZnS CQDs (a~e).

(a) (b)

(c) (d)

(e)

35

Figure 3.4 XPS analysis of In1-xGaxP/ZnS CQDs. (a) In 3d, (b) Ga 3d binding energy with different In/Ga ratio.

460 455 450 445 440

Binding Energy (eV)

Counts / s

30 27 24 21 18 15 12

In4d

Binding Energy (eV)

Counts / s

(a) (b)

36

Figure 3.5 Solution UV-Vis spectra and PL spectra of In1-xGax/ZnS CQDs.

300 400 500 600 700 800 900

Intensity (a.u.)

Wavelength (nm)

InP@ZnSf In0.75Ga0.25P@ZnS In0.5Ga0.5P@ZnS In0.25Ga0.75P@ZnS GaP@ZnS

300 400 500 600 700 800 900 Wavelength (nm)

Intensity (a.u.)

InP@ZnSf In0.75Ga0.25P@ZnS In0.5Ga0.5P@ZnS In0.25Ga0.75P@ZnS GaP@ZnS

200 300 400 500 600 700 800

InP@ZnSf In0.85Ga0.15P@ZnS In0.63Ga0.37P@ZnS In0.45Ga0.55P@ZnS GaP@ZnS

Absorbance (a.u.)

Wavelength (nm)

(a) (b) (c)

37

Figure 3.6 Normalized Temperature dependent PL spectra of In1-xGax/ZnS CQDs.

400 500 600 700 800 900

Wavelength (nm)

Normalized Intensity (a.u.)

20K 30K 50K 70K 100K 120K 150K 200K 250K 300K

400 500 600 700 800 900

Wavelength (nm)

20K 30K 50K 70K 100K 120K 150K 200K 250K 300K

Normalized Intensity (a.u.)

400 500 600 700 800 900

Wavelength (nm)

Normalized Intensity (a.u.) 20K 30K

50K 70K 100K 120K 150K 200K 250K 300K

400 500 600 700 800 900

Normalized Intensity (a.u.) 20K 30K

50K 70K 100K 120K 150K 200K 250K 300K

Wavelength (nm)

400 500 600 700 800 900

Normalized Intensity (a.u.)

Wavelength (nm)

20K 30K 50K 70K 100K 120K 150K 200K 250K 300K

(a) (b)

(c) (d)

(e)

38

References

1. Garnett W. Bryant. Excitons in quantum boxed: Correlation effects and quantum confinement. Phys. Rev. B. 1988, 37, 8763.

2. Choi, M.; Yang, J.; Kang, K.; Kim, D.; Choi, C.; Park, C.; Kim, S.; Chae, S.; Kim, T.-H.;

Kim, J.; Hyeon, T.; Kim, D.-H. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015.

3. Kramer, IJ and Sargent, EH. Colloidal quantum dot photovoltaics: a path forward. Acs. Nano.

2011, 5, 8506.

4. Lee, S.; Lee, K.; Kim, W.; Lee, S.; Shin, D.; Lee, D. C. Thin Amorphous TiO2 Shell on CdSe Nanocrystal Quantum Dots Enhances Photocatalysis of Hydrogen Evolution from Water. J.

Phy. Chem. C. 2014, 118, 23627.

5. Santra, S.; Yang, H.; Holloway, P. H.; Stanley, J. T.; Mericle, R. A. Synthesis of Water- Dispersible Fluorescent, Radio-Opaque, and Paramagnetic CdS: Mn/ZnS Quantum Dots: A Multifunctional Probe for Bioimaging. J. Am. Chem. Soc. 2005, 127, 1656

6. Park, J; An, K; Hwang, Y; Park, JG; Noh, HJ; Kim, JY. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals. Nat. mater. 2004.

7. Timonen, J.; Seppälä, ET; Ikkala, O From Hot‐Injection Synthesis to Heating‐Up Synthesis of Cobalt Nanoparticles: Observation of Kinetically Controllable Nucleation. . Angew. Chem.

Int. Ed. 2011, 50, 2080.

8. Pavel Zrazhevskiy; Mark Sena; Xiaohu Gao. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev., 2010, 39, 4326

9. Raffaella Lo Nigro; Roberta G. Toro; Graziella Malandrino; Ignazio L. Fragalà.

Morphological and structural control of nanostructured <100> oriented CeO2 films grown on random metallic substrates. J. Mater. Chem. 2005, 15, 2328

10. C. B. Murray; C. R. Kagan. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545.

11. Wu K, Bera A, Ma C, Du Y, Yang Y, Li L. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys.

2014, 16, 22476

12. Zaiats G, Yanover D, Vaxenburg R, Tilchin J. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications. Materials. 2014, 7, 7243.

13. Reiss, P; Protiere, M; Li, L Core/shell Semiconductor Nanocrystals. Small. 2009, 5, 154 14. Hines, MA; Guyot-Sionnest, P Synthesis and Characterization of Strongly Luminescing ZnS-

Capped CdSe Nanocrystals. J. Phys. Chem. 1996, 100, 468

39

15. Talapin, D. V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H.

CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem.

B. 2004, 108, 18826.

16. Xu, S.; Ziegler, J.; Nann, T. Rapid Synthesis of Highly Luminescent InP and InP/ZnS Nanocrystals. J. Mat. Chem. 2008, 18, 2653.

17. Ning, Z; Tian, H; Yuan, C; Fu, Y; Qin, H; Sun, L Solar Cells Sensitized with Type-II ZnSe–

CdS Core/shell Colloidal Quantum Dots. Chem. Comm. 2011, 47, 1536.

18. Park, J; Kim, SW CuInS2/ZnS Core/shell Quantum Dots by Cation Exchange and Their Blue-Shifted Photoluminescence. J. Mater. Chem., 2011, 21, 3745.

19. Xie, R.; Peng, X. Synthesis of Cu-Doped InP Nanocrystals (d-Dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. J. Am. Chem. Soc. 2009, 131, 10645.

20. Panda, SK; Hickey, SG; Demir, HV Bright White‐Light Emitting Manganese and Copper Co‐Doped ZnSe Quantum Dots. Angew. Chem. Int. Ed. 2011. 123, 4524.

21. Colvin, V. L., Schlamp, M. C., Alivisatos, A. P. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370, 354

22. Coe-Sullivan, S. SID Display Week 2012, Nanotechnology for displays: a potential breakthrough for OLED displays and LCDs, 2012.

23. Kwak, J.; Bae, W.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D.; Char, K.; et al. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Lett. 2012, 12, 2362.

24. Choi, M.; Yang, J.; Kang, K.; Kim, D.; Choi, C.; Park, C.; Kim, S.; Chae, S.; Kim, T.-H.;

Kim, J.; et al. Wearable Red-Green-Blue Quantum Dot Light-Emitting Diode Array Using High-Resolution Intaglio Transfer Printing. Nat. Comms 2015.

25. S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Hsu, and Y.-K. Kuo, Effect of n-type AlGaN layer on carrier transportation and efficiency droop of blue InGaN light-emitting diodes, IEEE Photon. Tech. Lett., 2009, 21, 975.

26. Khramtchenkov, DV; Arkhipov, VI Charge Carrier Recombination in Organic Bilayer Electroluminescent Diodes. I. Theory. J. appl. Phys., 1997, 81, 6954.

27. Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I.; Tamayo, A. New Charge-Carrier Blocking Materials for High Efficiency OLEDs. Organic electronics 2003, 4, 77.

28. Mcdonald, SA; Konstantatos, G; Zhang, S; Cyr, PW Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nat. mater. 2005, 4, 138.

29. Sargent, E. H., Colloidal quantum dot solar cells. Nat. Photonics. 2012, 6, 133.

30. Kramer, I. J.; Sargent, E. H., Colloidal Quantum Dot Photovoltaics: A Path Forward. ACS Nano. 2011, 5, 8506.

40

31. Lee, YL; Lo, YS Highly Efficient Quantum‐Dot‐Sensitized Solar Cell Based on Co‐ Sensitization of CdS/CdSe. Adv. Funct. Mater. 2009, 19, 604

32. Kramer, I. J.; Levina, L.; Debnath, R.; Zhitomirsky, D.; Sargent, E. H. Solar Cells Using Quantum Funnels. Nano Lett. 2011,11, 3701.

33. Wanger, D. D.; Correa, R. E.; Dauler, E. A.; Bawendi, M. G. The Dominant Role of Exciton Quenching in PbS Quantum-Dot-Based Photovoltaic Devices. Nano letters 2013, 13, 5907.

34. Tessier, M.; Dupont, D.; Nolf, K.; Roo, J.; Hens, Z. Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27, 4893.

35. Carenco, S.; Demange, M.; Shi, J.; Boissière, C.; Sanchez, C.; Floch, P.; Mézailles, N. White Phosphorus and Metal Nanoparticles: A Versatile Route to Metal Phosphide Nanoparticles. Chem. Comm. 2010, 46, 5578.

36. Khanna, PK; Eum, MS; Jun, KW; Baeg, JO; Seok, SI A Novel Synthesis of Indium Phosphide Nanoparticles. .Mater. Lett. 2003, 57, 4617.

37. Xu, S.; Ziegler, J.; Nann, T. Rapid Synthesis of Highly Luminescent InP and InP/ZnS Nanocrystals. J. Mater. Chem. 2008, 18, 2653.

38. Liu, W; Peng, A; Landry, D III-V Semiconductor Nanocrystal Complexes and Methods of Making Same. US Patent 7 2008.

39. Micic, O.; Sprague, J.; Curtis, C.; Jones, K.; Machol, J.; Nozik, A.; Giessen, H.; Fluegel, B.;

Mohs, G.; Peyghambarian, N. Synthesis and Characterization of Inp, Gap, and Gainp2 Quantum Dots. J. Phys. Chem. 1995, 99, 7754.

40. Joshi, A; Manasreh, MO; Davis, EA Optical Properties of Colloidal InGaP/ZnS Core/shell Nanocrystals. Appl. phys. Lett. 2006, 89, 1907

41. Virieux, H; Troedec, L. M.; Cros-Gagneux, A InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description. J. Am. Chem. Soc. 2012, 134, 19701.

42. Waldrop, JR; Grant, RW; Kraut, EA Measurement of AlP/GaP (001) Heterojunction Band Offsets by X‐ray Photoemission Spectroscopy. J. Vac. Sci. Technol. B. 1993, 11, 1617.

43. Guittet, MJ; Crocombette, JP; Gautier-Soyer, M Bonding and XPS Chemical Shifts in ZrSiO 4 versus SiO 2 and ZrO 2: Charge Transfer and Electrostatic Effects. Phys. Rev. B. 2001, 63, 125117.

44. Kagan, CR; Murray, CB; Bawendi, MG Long-Range Resonance Transfer of Electronic Excitations in Close-Packed CdSe Quantum-Dot Solids. Phys. Rev. B. 1996, 54, 8633.

45. Reshchikov, MA Temperature Dependence of Defect-Related Photoluminescence in III-V and II-VI Semiconductors. J. Appl. Phys. 2014, 115, 012010.

Dalam dokumen 1.1 Introduction of quantum dots --- 7 (Halaman 34-45)

Dokumen terkait