• Tidak ada hasil yang ditemukan

58

59

References

[1] Mitrousis, N., et al. (2018). "Biomaterials for cell transplantation." Nature Reviews Materials 3(11): 441-456.

[2] Abbina, S., et al. (2017). "Surface Engineering for Cell-Based Therapies:

Techniques for Manipulating Mammalian Cell Surfaces." ACS Biomaterials Science

& Engineering 4(11): 3658-3677.

[3] Farina, M., et al. (2018). "Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond." Adv Drug Deliv Rev.

[4] Tang, J., et al. (2017). "Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction." ACS Nano 11(10): 9738- 9749.

[5] Hasturk, O. and D. L. Kaplan (2018). "Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells." Acta Biomater.

[6] Fang, R. H., et al. (2018). "Cell Membrane Coating Nanotechnology." Adv Mater 30(23): e1706759.

[7] Pham-Hua, D., et al. (2017). "Islet encapsulation with polyphenol coatings

60

decreases pro-inflammatory chemokine synthesis and T cell trafficking." Biomaterials 128: 19-32.

[8] Kozlovskaya, V., et al. (2012). "Ultrathin polymeric coatings based on hydrogen- bonded polyphenol for protection of pancreatic islet cells." Adv Funct Mater 22(16):

3389-3398.

[9] Zhu, W., et al. (2019). "SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticle-Based Exoskeletons." Adv Mater: e1900545.

[10] Pham, T. T., et al. (2018). "Tissue adhesive FK506-loaded polymeric nanoparticles for multi-layered nano-shielding of pancreatic islets to enhance xenograft survival in a diabetic mouse model." Biomaterials 154: 182-196.

[11] Mao, A. S., et al. (2017). "Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery." Nat Mater 16(2):

236-243.

[12] Park, J., et al. (2018). "Engineering the Surface of Therapeutic "Living" Cells."

Chem Rev 118(4): 1664-1690.

[13] Yang, J., et al. (2019). "Encapsulation of individual living cells with enzyme responsive polymer nanoshell." Biomaterials 197: 317-326.

[14] Wilson, J. T., et al. (2011). "Cell surface engineering with polyelectrolyte

61

multilayer thin films." J Am Chem Soc 133(18): 7054-7064.

[15] Kim, H., et al. (2018). "General and Facile Coating of Single Cells via Mild Reduction." J Am Chem Soc 140(4): 1199-1202.

[16] Rogozhnikov, D., et al. (2016). "Scaffold Free Bio-orthogonal Assembly of 3- Dimensional Cardiac Tissue via Cell Surface Engineering." Sci Rep 6: 39806.

[17] Youn, W., et al. (2017). "Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO2 Shells for T-Cell Therapy." Angew Chem Int Ed Engl 56(36): 10702-10706.

[18] Niu, J., et al. (2017). "Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization." Nat Chem 9(6): 537-545.

[19] P. de Vos, et al. (2014). “Polymers in cell encapsulation from enveloped cell perspective.” Adv Drug Deliv Rev 67-68: 15-34.

[20] Lee, S. H., et al. (2016). "Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation." Biotechnol Bioeng 113(4): 735-743.

[21] Kim, S. H., et al. (2018). "Enzyme-mediated tissue adhesive hydrogels for meniscus repair." Int J Biol Macromol 110: 479-487.

62

[22] Kim, S. H., et al. (2018). "Tissue adhesive, rapid forming, and sprayable ECM hydrogel via recombinant tyrosinase crosslinking." Biomaterials 178: 401-412.

[23] Choi, D., et al. (2017). "Multifunctional Collagen and Hyaluronic Acid Multilayer Films on Live Mesenchymal Stem Cells." ACS Appl Mater Interfaces 9(14): 12264-12271.

[24] Choi, D., et al. (2017). "Cytoprotective Self-assembled RGD Peptide Nanofilms for Surface Modification of Viable Mesenchymal Stem Cells." Chemistry of Materials 29(5): 2055-2065.

[25] Zhou, Q. and D. A. Melton (2018). "Pancreas regeneration." Nature 557(7705):

351-358.

[26] Vegas, A. J., et al. (2016). "Long-term glycemic control using polymer- encapsulated human stem cell-derived beta cells in immune-competent mice." Nat Med 22(3): 306-311.

[27] Bochenek, M. A., et al. (2018). "Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques." Nat Biomed Eng 2(11): 810-821.

[28] Fukuda, Y., et al. (2018). "Layer-by-layer cell coating technique using extracellular matrix facilitates rapid fabrication and function of pancreatic beta-cell spheroids." Biomaterials 160: 82-91.

63

[29] Wilson, J. T., et al. (2008). "Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation." Nano Lett 8(7): 1940-1948.

[30] Kizilel, S., et al. (2010). "Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion." Tissue Eng Part A 16(7): 2217-2228.

[31] Llacua, L. A., et al. (2018). "Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets." Diabetologia 61(6):

1261-1272.

64

국문초록

세포치료제를 위한 적층식 하이드로겔 필름 세포 코팅

세포치료제는 중증 질환에 대한 치료법으로 주목을 받고 있다. 하지만, 세포치료제의 효능은 주사 시 또는 투여 후 외부 스트레스로 인해 그 생존율이 낮다는 한계점이 있다. 본 연구에서는 생체 적합 및 세포 보호 하이드로겔 필름을 사용하여 적층식 세포 코팅 플랫폼을 구축하였다.

하이드로겔 막 형성을 촉진하기 위하여, 반대 전하를 띄며 Streptomyces

avermitilis 유래 타이로시네이즈 매개 산화 커플링 반응을 통해 세로

표면의 작용기와 공유결합을 형성하거나 교차결합하는 히알루론산 및 글라이콜 키토산에 단일페놀 그룹을 도입하였다. 하이드로겔 필름이 코팅된 세포는 제타 전위, 형광 세기를 측정하고 TEM 이미지를 측정하여 확인되었다. 6개 층이 쌓인 하이드로겔 필름은 139.40 nm였다. 코팅 과정 후 세포의 생존율은 나빠지지 않았다. 더 나아가, 췌도 이식에의 활용을 위하여 베타 세포 스페로이드의 표면에 하이드로겔 필름을 형성하였다.

컨포칼 이미지에서 얇고, 균일하고, 압축되어 있는 필름 층을 관찰할 수 있었다. 더욱이, 하이드로겔 필름이 코팅된 베타 세포 스페로이드는 일반 세포보다 더 높은 인슐린 분비 능력을 보였다. 마지막으로, 하이드로겔 필름의 물리적, 산화 스트레스에 대한 세포 보호 효과가 확인되었다.

따라서, 우리가 개발한 빠르고, 편리하고, 단단하고, 층 수 제어가 가능한 세포 코팅 기술이 세포치료제의 임상 활용에 있어 큰 잠재력을 부여할

Dokumen terkait