• Tidak ada hasil yang ditemukan

Natural graphite ATO-NG1:20 ATO-NG1:10

ATO-NG1:10with carbon coating Natural graphite

ATO-NG1:20 ATO-NG1:10 ATO-NG1:10

with carbon coating

a

b

63

Figure 3.9. Rate capabilities (0.2-5 C) of bare natural graphite and ATO-NG electrodes.

Natural graphite ATO-NG1:20 ATO-NG1:10

ATO-NG1:10with carbon coating

64 3.4 Conclusion

In summary, we described a simple process to synthesize ATO-coated graphite particles. The ATO nanoparticles were deposited on the graphite surface via a heat treatment and the surface coverage could be tuned by controlling of the amount of ATO colloidal solution. In order to coat a more uniform ATO layers, the carbon coating process of ATO-NG was introduced using carbon source. The ATO-coated graphite particles considerably improved electrochemical performances, including a high reversible capacity, a superior cycling life, and an excellent rate capability in LIBs, because the ATO nanoparticles on the graphite surface contributed to increase specific capacity and electronic conductivity. This strategy can be extended to other materials to synthesize advanced anode and cathode materials for practical LIB applications.

65 3.5 References

1. Park, J.-K.,Principles and Applications of Lithium Secondary Batteries. Wiley-VCH Verlag GmbH & Co. KGaA : 2012.

2. Choi, N.-S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L.

F.; Cho, J.; Bruce, P. G., Challenges Facing Lithium Batteries and Electrical Double‐Layer Capacitors. Angewandte Chemie International Edition 2012, 51 (40), 9994-10024.

3. Megahed, S.; Scrosati, B., Lithium-ion rechargeable batteries. Journal of Power Sources 1994, 51 (1), 79-104.

4. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4 (9), 3243- 3262

5. Nishi, Y., Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources 2001, 100 (1), 101-106.

6. Dunn, B.; Kamath, H.; Tarascon, J. M., Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011, 334, 928-935

7. Buqa, H.; Goers, D.; Holzapfel M.; Spahr M. E.; Novák P., High Rate Capability of Graphite Negative Electrodes for Lithium-ion Batteries. J. Electrochem. Soc. 2005, 152 (2), A474-A481.

8. Wu, Y.P.; Rahm, E.; Holze, R., Carbon anode materials for lithium ion batteries. Journal of Power Sources 2003, 114, 228-236.

9. Guo, P.; Song, H.; Chen, X., Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications 2009, 11 (6), 1320-1324.

10. Kumai, Y.; Shirai, S.; Sudo, E.; Seki, J.; Okamoto H.; Sugiyama Y.; Nakano H., Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries. Journal of Power Sources 2011, 196 (3), 1503-1507.

11. Yong, C.; Shuang, L.; Xiaoming, Y.; Quanyi, H.; Ming, Z.; Taihong, W., Facile preparation of porous one-dimensional Mn2O3 nanostructures and their application as anode materials for lithium-ion batteries. Physica E 2010, 43, 70-75.

12. Cui, Z.-M.; Hang, L.-Y.; Song, W.-G.; Guo, Y.-G., High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries.

Chemistry of Materials 2009, 21 (6), 1162-1166.

13. Li, L.M.; Yin, X.; Liu, S.; Wang, Y.; Chen, L; Wang, T., Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochemistry Communications 2010, 12 (10), 1383-1386.

14. Pfanzelt, M.; Kubiak, P.; Fleischhammer, M.; Wohlfahrt-Mehrens, M., TiO2 rutile-An alternative anode material for safe lithium-ion batteries. Journal of Power Sources 2011, 196

66 (16), 6815-6821.

15. Huang, X.H.; Xia, X.H.; Yuan, Y.F.; Zhou, F., Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica. Acta 2011, 56 (14), 4960-4965.

16. Li, Y.; Tan, B.; Wu, Y., Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters 2008, 8 (1), 265–270.

17. Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M., Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4 (6), 3187-3194.

18. Wang, X.; Zhou, X.; Yao, K.; Zhang, J.; Liu Z., A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 2011, 49 (1), 133-139.

19. Xing, L.; Cui, C.; Ma, C.; Xue, X., Facile synthesis of α-MnO2/graphene nanocomposites and their high performance as lithium-ion battery anode. Materials Letters 2011, 65 (14), 2104- 2106.

20. Zhou G.; Wang D.W.; Li F.; Zhang L.; Li N.; Wu Z. S.; Wen L.; Lu G. Q; Cheng H. M., Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials 2010, 22 (18), 5306-5313.

21. Kim, J. G.; Nam, S. H.; Lee, S. H.; Choi, S. M.; Kim, W. B., SnO2 Nanorod-Planted Graphite:

An Effective Nanostructure Configuration for Reversible Lithium Ion Storage. ACS Applied Materials & Interfaces 2011, 3, 828-835.

22. Li, Y.; Zhu, S.; Liu, Q.; Gu, J.; Guo, Z.; Chen, Z.; Feng, C.; Zhang, D.; Moon, W.-J., Carbon- coated SnO2@C with hierarchically porous structures and graphite layers inside for a high- performance lithium-ion battery. Journal of Materials Chemistry 2012, 22, 2766-2773.

23. Courtney, I. A.; McKinnon, W. R.; Dahn, J. R., On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. Journal of The Electrochemical Society 1999, 146, 59-68.

24. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont L.; Tarascon, J. M., Nano-sized transition- metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496- 499.

25. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L.A., Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes.

Advanced Materials 2008, 20, 258-262.

26. Ma, H.; Zhang, S.; Ji, W.; Tao, Z.; Chen, J., α-CuV2O6 Nanowires: Hydrothermal Synthesis and Primary Lithium Battery Application. JACS 2008, 130, 5361–5367.

27. Wang, Y.; Djerdj, I.; Smarsly, B.; Antonietti, M., Antimony-Doped SnO2 Nanopowders with High Crystallinity for Lithium-Ion Battery Electrode. Chemistry of Materials 2009, 21, 3202- 3209.

67

28. Stjerna, B.; Olsson, E.; Granqvist, C. G., Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies. F, Sb, or Mo. Journal of Applied Physics 1994, 76, 3797-3817.

29. Hu, P.; Yang, H., Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Applied Clay Science 2010, 48, 368-374.

30. Qin, Y.; Zhong, L.; Wu, B., Preparation of ATO Nanoparticles from a New Composite Complex Salt. Materials Transactions 2007, 48 (1), 29-31.

31. Zhang, L.; Wu, J.; Chen, F.; Li, X.; Schoenung, J. M.; Shen, Q., Spark plasma sintering of antimony-doped tin oxide (ATO) nanoceramics with high density and enhanced electrical conductivity. Journal of Asian Ceramic Societies 2013, 1, 114-119.

32. Kim, H.; Han, B.; Choo, J.; Cho, J., Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. Angewandte Chemie International Edition 2008, 47, 10151-10154.

33. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Letters 2009, 9 (11), 3844-3847.

34. Yin, X. M.; Li, C. C.; Zhang, M.; Hao, Q. Y.; Liu, S.; Chen, L. B.; Wang T. H., One-Step Synthesis of Hierarchical SnO2 Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries. The Journal of Physical Chemistry C 2010, 114, 8084-8088.

35. Lee, J.-I.; Lee, E.-H., Park, J.-H.; Park, S.; Lee, S.-Y., Ultrahigh-Energy-Density Lithium-Ion Batteries Based on a High-Capacity Anode and a High-Voltage Cathode with an Electroconductive Nanoparticle Shell. Advanced Energy Materials 2014, 4(8), 1301542- 1301550.

68

Dalam dokumen for High-Performance Lithium-Ion Batteries (Halaman 67-73)