39
Figure 33 TEM image; Synthesis of another CNT using previous CNT as a catalyst support. The darker part of the yellow arrow means a metal catalyst.
40
synthesized in the liquid phase. However, through this study, it was revealed that the long-suspended SWCNT can also be used as a one-dimensional support.
The results of this study can be used as a platform that enables real-time research of catalysts. In this process, more accurate observation is possible using In-situ TEM. Next, it can be used as an electron movement observation platform in the catalyst using the electrical properties of CNT. Using this platform, electrocatalyst morphology change and performance research are possible.
Figure 34 Future perspectives
41
REFERENCES
A, J. B., M, J., D, R. R., & Haridoss, P. (2015). Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere. Diamond and Related Materials, 55, 12-15. doi:https://doi.org/10.1016/j.diamond.2015.02.004
Ahmadi, H., Ramezani, M., Yazdian-Robati, R., Behnam, B., Razavi Azarkhiavi, K., Hashem Nia, A., . . . Abnous, K.
(2017). Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach. Chemico-Biological Interactions, 275, 196-209.
doi:https://doi.org/10.1016/j.cbi.2017.08.004
Ajayan, P. M., Stephan, O., Colliex, C., & Trauth, D. (1994). Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite. 265(5176), 1212-1214.
doi:doi:10.1126/science.265.5176.1212
Ando, Y. (2010). Carbon nanotube: the inside story. J Nanosci Nanotechnol, 10(6), 3726-3738.
doi:10.1166/jnn.2010.2017
Anglaret, E., Bendiab, N., Guillard, T., Journet, C., Flamant, G., Laplaze, D., . . . Sauvajol, J.-L. J. C. (1998). Raman characterization of single wall carbon nanotubes prepared by the solar energy route. 36(12), 1815-1820.
Arepalli, S. (2004). Laser Ablation Process for Single-Walled Carbon Nanotube Production. J Nanosci Nanotechnol, 4(4), 317-325. doi:10.1166/jnn.2004.072
Avouris, P., Chen, Z., & Perebeinos, V. (2007). Carbon-based electronics. Nature Nanotechnology, 2(10), 605-615.
doi:10.1038/nnano.2007.300
Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., & Weisman, R. B. (2002). Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. 298(5602), 2361-2366.
doi:doi:10.1126/science.1078727
Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C. (2001). Logic Circuits with Carbon Nanotube Transistors.
294(5545), 1317-1320. doi:doi:10.1126/science.1065824
Bandow, S., Asaka, S., Saito, Y., Rao, A., Grigorian, L., Richter, E., & Eklund, P. J. P. R. L. (1998). Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. 80(17), 3779.
Ben Belgacem, A., Hinkov, I., Yahia, S. B., Brinza, O., & Farhat, S. (2016). Arc discharge boron nitrogen doping of
carbon nanotubes. Materials Today Communications, 8, 183-195.
doi:https://doi.org/10.1016/j.mtcomm.2016.08.001
Brady, G. J., Way, A. J., Safron, N. S., Evensen, H. T., Gopalan, P., & Arnold, M. S. (2016). Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. 2(9), e1601240.
doi:doi:10.1126/sciadv.1601240
Cao, Q., Kim, H.-s., Pimparkar, N., Kulkarni, J. P., Wang, C., Shim, M., . . . Rogers, J. A. (2008). Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 454(7203), 495-500.
doi:10.1038/nature07110
Cao, X., Lau, C., Liu, Y., Wu, F., Gui, H., Liu, Q., . . . Zhou, C. (2016). Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors. ACS Nano, 10(11), 9816-9822. doi:10.1021/acsnano.6b05368
Capek, I. (2009). Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
Advances in Colloid and Interface Science, 150(2), 63-89. doi:https://doi.org/10.1016/j.cis.2009.05.006 Cellot, G., La Monica, S., Scaini, D., Rauti, R., Bosi, S., Prato, M., . . . Ballerini, L. (2017). Successful Regrowth of Retinal Neurons When Cultured Interfaced to Carbon Nanotube Platforms. Journal of Biomedical Nanotechnology, 13(5), 559-565. doi:10.1166/jbn.2017.2364
Chafidz, A., Latief, F. H., Samad, U. A., Ajbar, A., & Al-Masry, W. (2016). Nanoindentation Creep, Nano-Impact, and Thermal Properties of Multiwall Carbon Nanotubes–Polypropylene Nanocomposites Prepared via Melt Blending. Polymer-Plastics Technology and Engineering, 55(13), 1373-1385.
doi:10.1080/03602559.2016.1163582
Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., Wong Shi Kam, N., Shim, M., Li, Y., . . . Dai, H. (2003). Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. 100(9), 4984-4989.
doi:10.1073/pnas.0837064100 %J Proceedings of the National Academy of Sciences
Chong, C. T., Tan, W. H., Lee, S. L., Chong, W. W. F., Lam, S. S., & Valera-Medina, A. (2017). Morphology and growth of carbon nanotubes catalytically synthesised by premixed hydrocarbon-rich flames. Materials Chemistry and Physics, 197, 246-255. doi:https://doi.org/10.1016/j.matchemphys.2017.05.036 Coleman, J. N., Khan, U., Blau, W. J., & Gun’ko, Y. K. (2006). Small but strong: A review of the mechanical
properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624-1652.
42 doi:https://doi.org/10.1016/j.carbon.2006.02.038
Collins, P. G., Arnold, M. S., & Avouris, P. (2001). Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. 292(5517), 706-709. doi:doi:10.1126/science.1058782
Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., & Smalley, R. E. (1996). Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384(6605), 147-150. doi:10.1038/384147a0
Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes.
Physics Reports, 409(2), 47-99. doi:https://doi.org/10.1016/j.physrep.2004.10.006
Esteves, L. M., Oliveira, H. A., & Passos, F. B. (2018). Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review. Journal of Industrial and Engineering Chemistry, 65, 1-12.
doi:https://doi.org/10.1016/j.jiec.2018.04.012
Esteves, L. M., Oliveira, H. A., Xing, Y., & Passos, F. B. (2021). Cobalt supported on carbon nanotubes for methane chemical vapor deposition for the production of new carbon nanotubes. New Journal of Chemistry, 45(31), 14218-14226. doi:10.1039/D1NJ02442F
Ferreira, F. V., Cividanes, L. S., Gouveia, R. F., & Lona, L. M. F. (2019). An overview on properties and applications of poly(butylene adipate-co-terephthalate)–PBAT based composites. 59(s2), E7-E15.
doi:https://doi.org/10.1002/pen.24770
Ferreira, F. V., Franceschi, W., Menezes, B. R., Biagioni, A. F., Coutinho, A. R., & Cividanes, L. S. (2019). Synthesis, characterization, and applications of carbon nanotubes. In Carbon-Based Nanofillers and Their Rubber Nanocomposites (pp. 1-45): Elsevier.
Ferreira, F. V., Francisco, W., Menezes, B. R. C., Brito, F. S., Coutinho, A. S., Cividanes, L. S., . . . Thim, G. P. (2016).
Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites.
Applied Surface Science, 389, 921-929. doi:https://doi.org/10.1016/j.apsusc.2016.07.164
Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. 323(5915), 760-764. doi:doi:10.1126/science.1168049 Goornavar, V., Jeffers, R., Biradar, S., & Ramesh, G. T. (2014). Utilization of highly purified single wall carbon
nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose
sensor. Materials Science and Engineering: C, 40, 299-307.
doi:https://doi.org/10.1016/j.msec.2014.04.009
Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1995). Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 243(1), 49-54. doi:https://doi.org/10.1016/0009- 2614(95)00825-O
Ham, H. T., Choi, Y. S., & Chung, I. J. (2005). An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. Journal of Colloid and Interface Science, 286(1), 216-223. doi:https://doi.org/10.1016/j.jcis.2005.01.002
Hashem Nia, A., Behnam, B., Taghavi, S., Oroojalian, F., Eshghi, H., Shier, W. T., . . . Ramezani, M. (2017). Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate– polyethylenimine conjugates as non-viral gene carriers. MedChemComm, 8(2), 364-375. doi:10.1039/C6MD00481D
Herrera-Basurto, R., López-Lorente, Á. I., & Valcárcel, M. (2015). Scanning electron microscopy of carbon nanotubes dispersed in ionic liquid: Solvent influence study. Microchemical Journal, 122, 137-143.
doi:https://doi.org/10.1016/j.microc.2015.04.012
Hirsch, A., & Vostrowsky, O. (2005). Functionalization of Carbon Nanotubes. In A. D. Schlüter (Ed.), Functional Molecular Nanostructures: -/- (pp. 193-237). Berlin, Heidelberg: Springer Berlin Heidelberg.
Hou, P.-X., Liu, C., & Cheng, H.-M. (2008). Purification of carbon nanotubes. Carbon, 46(15), 2003-2025.
doi:https://doi.org/10.1016/j.carbon.2008.09.009
Hussain, F., Hojjati, M., Okamoto, M., & Gorga, R. E. (2006). Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. 40(17), 1511-1575.
doi:10.1177/0021998306067321
Iablokov, V., Beaumont, S. K., Alayoglu, S., Pushkarev, V. V., Specht, C., Gao, J., . . . Somorjai, G. A. (2012). Size- Controlled Model Co Nanoparticle Catalysts for CO2 Hydrogenation: Synthesis, Characterization, and Catalytic Reactions. Nano Letters, 12(6), 3091-3096. doi:10.1021/nl300973b
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. doi:10.1038/354056a0 Iijima, S., Ajayan, P., & Ichihashi, T. J. P. r. l. (1992). Growth model for carbon nanotubes. 69(21), 3100.
Imasaka, K., Kanatake, Y., Ohshiro, Y., Suehiro, J., & Hara, M. (2006). Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water. Thin Solid Films, 506-507, 250-254.
43 doi:https://doi.org/10.1016/j.tsf.2005.08.024
Ivchenko, E. L., & Spivak, B. (2002). Chirality effects in carbon nanotubes. Physical Review B, 66(15), 155404.
doi:10.1103/PhysRevB.66.155404
José-Yacamán, M., Miki-Yoshida, M., Rendón, L., & Santiesteban, J. G. (1993). Catalytic growth of carbon microtubules with fullerene structure. 62(6), 657-659. doi:10.1063/1.108857
Jouguelet, E., Mathis, C., & Petit, P. J. C. P. L. (2000). Controlling the electronic properties of single-wall carbon nanotubes by chemical doping. 318(6), 561-564.
Julkapli, N. M., & Bagheri, S. (2015). Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 40(2), 948-979. doi:https://doi.org/10.1016/j.ijhydene.2014.10.129 Kang, I., Schulz, M. J., Kim, J. H., Shanov, V., & Shi, D. (2006). A carbon nanotube strain sensor for structural health
monitoring. Smart Materials and Structures, 15(3), 737-748. doi:10.1088/0964-1726/15/3/009 Kang, S. J., Kocabas, C., Ozel, T., Shim, M., Pimparkar, N., Alam, M. A., . . . Rogers, J. A. (2007). High-performance
electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnology, 2(4), 230-236. doi:10.1038/nnano.2007.77
Kasuya, A., Sasaki, Y., Saito, Y., Tohji, K., & Nishina, Y. J. P. R. L. (1997). Evidence for size-dependent discrete dispersions in single-wall nanotubes. 78(23), 4434.
Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103(1), 2555-2558.
doi:https://doi.org/10.1016/S0379-6779(98)00278-1
Kaul, A. B., Wong, E. W., Epp, L., & Hunt, B. D. (2006). Electromechanical Carbon Nanotube Switches for High- Frequency Applications. Nano Letters, 6(5), 942-947. doi:10.1021/nl052552r
Kingston, C. T., & Simard, B. (2003). Fabrication of Carbon Nanotubes. Analytical Letters, 36(15), 3119-3145.
doi:10.1081/AL-120026564
Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. J. N. (1990). Solid C 60: a new form of carbon.
347(6291), 354-358.
Kreiger, M., & Pearce, J. M. (2013). Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustainable Chemistry & Engineering, 1(12), 1511-1519. doi:10.1021/sc400093k
Krissanasaeranee, M., Wongkasemjit, S., Cheetham, A. K., & Eder, D. (2010). Complex carbon nanotube-inorganic hybrid materials as next-generation photocatalysts. Chemical Physics Letters, 496(1), 133-138.
doi:https://doi.org/10.1016/j.cplett.2010.07.043
Kumar, S., Rani, R., Dilbaghi, N., Tankeshwar, K., & Kim, K.-H. (2017). Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews, 46(1), 158-196.
doi:10.1039/C6CS00517A
Lagarón, J. M., López-Rubio, A., & José Fabra, M. (2016). Bio-based packaging. 133(2).
doi:https://doi.org/10.1002/app.42971
Laudenbach, J., Schmid, D., Herziger, F., Hennrich, F., Kappes, M., Muoth, M., . . . Maultzsch, J. (2017). Diameter dependence of the defect-induced Raman modes in functionalized carbon nanotubes. Carbon, 112, 1- 7. doi:https://doi.org/10.1016/j.carbon.2016.10.065
Lee, C. Y., Choi, W., Han, J.-H., & Strano, M. S. (2010). Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel. 329(5997), 1320-1324. doi:doi:10.1126/science.1193383
Liao, X., Serquis, A., Jia, Q., Peterson, D., Zhu, Y., & Xu, H. J. A. p. l. (2003). Effect of catalyst composition on carbon nanotube growth. 82(16), 2694-2696.
Lin, J.-H., Pan, Y.-J., Hsieh, C.-T., Huang, C.-H., Lin, Z.-I., Chen, Y.-S., . . . Lou, C.-W. (2016). Using multiple melt blending to improve the dispersion of montmorillonite in polyamide 6 nanocomposites. Polymer Testing, 56, 74-82. doi:https://doi.org/10.1016/j.polymertesting.2016.09.016
Liu, J., Tang, X., Li, Y., Dai, Z., Chen, F., Huang, H., . . . Chen, D. (2017). Effects of irradiation-induced structure evolution on the adhesion force and instantaneous modulus of multi-walled carbon nanotube arrays.
Materials Chemistry and Physics, 196, 160-169.
doi:https://doi.org/10.1016/j.matchemphys.2017.04.052
Loos, M. (2015). Chapter 2 - Composites. In M. Loos (Ed.), Carbon Nanotube Reinforced Composites (pp. 37-72).
Oxford: William Andrew Publishing.
Marchesan, S., Ballerini, L., & Prato, M. (2017). Nanomaterials for stimulating nerve growth. 356(6342), 1010- 1011. doi:doi:10.1126/science.aan1227
Natsuki, T., Tantrakarn, K., & Endo, M. J. A. P. A. (2004). Effects of carbon nanotube structures on mechanical
44 properties. 79(1), 117-124.
Ochiai, L. M., Agustini, D., Figueiredo-Filho, L. C. S., Banks, C. E., Marcolino-Junior, L. H., & Bergamini, M. F. (2017).
Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sensors and Actuators B: Chemical, 241, 978-984.
doi:https://doi.org/10.1016/j.snb.2016.10.150
Odom, T. W., Huang, J.-L., Kim, P., & Lieber, C. M. (1998). Atomic structure and electronic properties of single- walled carbon nanotubes. Nature, 391(6662), 62-64. doi:10.1038/34145
Park, S., Vosguerichian, M., & Bao, Z. (2013). A review of fabrication and applications of carbon nanotube film- based flexible electronics. Nanoscale, 5(5), 1727-1752. doi:10.1039/C3NR33560G
Pimenta, M., Marucci, A., Empedocles, S., Bawendi, M., Hanlon, E., Rao, A., . . . Dresselhaus, M. J. P. R. B. (1998).
Raman modes of metallic carbon nanotubes. 58(24), R16016.
Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P., Williams, K., . . . Thess, A. J. S. (1997). Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. 275(5297), 187-191.
Richter, E., & Subbaswamy, K. J. P. R. L. (1997). Theory of size-dependent resonance Raman scattering from carbon nanotubes. 79(14), 2738.
Rutherglen, C., Jain, D., & Burke, P. (2009). Nanotube electronics for radiofrequency applications. Nature Nanotechnology, 4(12), 811-819. doi:10.1038/nnano.2009.355
Sagara, T., Kurumi, S., & Suzuki, K. (2014). Growth of linear Ni-filled carbon nanotubes by local arc discharge in liquid ethanol. Applied Surface Science, 292, 39-43. doi:https://doi.org/10.1016/j.apsusc.2013.11.056 Snow, E. S., Novak, J. P., Campbell, P. M., & Park, D. (2003). Random networks of carbon nanotubes as an
electronic material. 82(13), 2145-2147. doi:10.1063/1.1564291
Son, D., Koo, J. H., Song, J.-K., Kim, J., Lee, M., Shim, H. J., . . . Kim, D.-H. (2015). Stretchable Carbon Nanotube Charge-Trap Floating-Gate Memory and Logic Devices for Wearable Electronics. ACS Nano, 9(5), 5585- 5593. doi:10.1021/acsnano.5b01848
Star, A., Han, T.-R., Joshi, V., Gabriel, J.-C. P., & Grüner, G. (2004). Nanoelectronic Carbon Dioxide Sensors. 16(22), 2049-2052. doi:https://doi.org/10.1002/adma.200400322
Su, C.-Y., Xu, Y., Zhang, W., Zhao, J., Tang, X., Tsai, C.-H., & Li, L.-J. J. C. o. M. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. 21(23), 5674-5680.
Su, Y., & Zhang, Y. (2015). Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon, 83, 90-99.
doi:https://doi.org/10.1016/j.carbon.2014.11.023
Szymanski, L., Kolacinski, Z., Wiak, S., Raniszewski, G., & Pietrzak, L. (2017). Synthesis of Carbon Nanotubes in Thermal Plasma Reactor at Atmospheric Pressure. 7(2), 45.
Thostenson, E. T., Ren, Z., & Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 61(13), 1899-1912.
doi:https://doi.org/10.1016/S0266-3538(01)00094-X
Venugopal, G., Veetil, J. C., Raghavan, N., Singh, V., Kumar, A., & Mukkannan, A. (2016). Nano-dynamic mechanical and thermal responses of single-walled carbon nanotubes reinforced polymer nanocomposite thinfilms. Journal of Alloys and Compounds, 688, 454-459.
doi:https://doi.org/10.1016/j.jallcom.2016.07.209
Wang, C., Chien, J.-C., Takei, K., Takahashi, T., Nah, J., Niknejad, A. M., & Javey, A. (2012). Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications. Nano Letters, 12(3), 1527-1533. doi:10.1021/nl2043375 Wang, F., Gu, H., & Swager, T. M. (2008). Carbon Nanotube/Polythiophene Chemiresistive Sensors for Chemical
Warfare Agents. Journal of the American Chemical Society, 130(16), 5392-5393. doi:10.1021/ja710795k Wang, J. (2005). Carbon-Nanotube Based Electrochemical Biosensors: A Review. 17(1), 7-14.
doi:https://doi.org/10.1002/elan.200403113
White, C. T., & Todorov, T. N. (2001). Nanotubes go ballistic. Nature, 411(6838), 649-651. doi:10.1038/35079720 Yang, Z., Deng, J., Chen, X., Ren, J., & Peng, H. (2013). A Highly Stretchable, Fiber-Shaped Supercapacitor. 52(50),
13453-13457. doi:https://doi.org/10.1002/anie.201307619
Yoon, J., Lee, J., Choi, B., Lee, D., Kim, D. H., Kim, D. M., . . . Choi, S.-J. (2017). Flammable carbon nanotube transistors on a nitrocellulose paper substrate for transient electronics. Nano Research, 10(1), 87-96.
doi:10.1007/s12274-016-1268-6
Yu, L., Shearer, C., & Shapter, J. (2016). Recent Development of Carbon Nanotube Transparent Conductive Films.
Chemical Reviews, 116(22), 13413-13453. doi:10.1021/acs.chemrev.6b00179
Yuan, Q., & Ding, F. J. A. C. I. E. (2015). How a zigzag carbon nanotube grows. 54(20), 5924-5928.