• Tidak ada hasil yang ditemukan

Discussions

Dalam dokumen Jiheun Lee (Halaman 37-42)

4. Concluding remarks

4.2 Discussions

Despite a significant improvement in climate modeling, several regional SST biases from models spanning three CMIP phases found little general improvement. Precisely speaking, QBIAS is not necessarily the bias in surface heat flux itself but encompasses the effect of model errors, for example in convective parameterization, cloud schemes, boundary layer schemes, or vertical mixing scheme in an ocean model, on the SST. Although the origins of regional surface heat flux biases are beyond the scope of this study, several studies have noted long-standing regional SST biases are dependent on model resolution. For the tropically uniform cold bias, which is claimed to be the cause of equatorial dry bias, cloud biases in atmospheric models and 1-m near surface resolution in ocean model are suggested to be important for reducing cold biases (Li & Xie, 2012; Zhu et al., 2020). We show that the realistic simulations of SSTs in eastern boundary upwelling systems are critically important to improvement in regional precipitation bias in the tropics, and therefore, it is noteworthy that the biggest improvements in warm SST biases in coastal stratocumulus regions have been made with increased resolution in atmospheric model (Roberts et al., 2019). Meanwhile, pronounced cold model biases are persistent in the North Pacific and Atlantic, which is largely attributed to cloud albedo errors in atmospheric model (Burls et al., 2017) and can be reduced when the mixing strength is enhanced within ocean-only simulations (Zhu et al., 2020).

In efforts to find possible causes of the double-ITCZ, many previous studies found that the Southern Ocean cloud problem that leads to warm SST biases had little effect on shifting the ITCZ provided that the oceanic role in transporting heat northward is considered. Along this line of research, Hawcroft et al. (2017) further supports the idea that, with a focus on large-scale energetic controls, improvements in the representation of atmospheric processes should precede those in coupled models in efforts to correct the double-ITCZ problem. Though the results of this study only consider the effect of atmospheric teleconnection without a dynamical ocean, it is legitimate to assume that the double- ITCZ bias can be decomposed into roles of regional SST biases in atmospheric sense given that QBIAS

involves errors in the oceanic processes and regional slab ocean experiments confirm near-linearity.

It is yet to be seen how ocean dynamics may modulate the results reported here but our slab ocean experiments provide first-step guidance for where should be targeted to improve certain features of climate biases.

27

References

Adam, O., Schneider, T., Brient, F., & Bischoff, T. (2016). Relation of the double ITCZ bias to the ‐ atmospheric energy budget in climate models. Geophysical Research Letters, 43(14), 7670- 7677.

Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L., ... & Wyman, B. L. (2004).

The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. Journal of Climate, 17(24), 4641-4673.

Baldwin, J. W., Atwood, A. R., Vecchi, G. A., & Battisti, D. S. (2021). Outsize influence of Central American orography on global climate.AGU Advances,2(2), e2020AV000343.

Bellucci, A., Gualdi, S., & Navarra, A. J. J. O. C. (2010). The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. Journal of Climate, 23(5), 1127-1145.

Bischoff, T., & Schneider, T. (2016). The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. Journal of Climate, 29(8), 2997-3013.

Burls, N. J., Muir, L., Vincent, E. M., & Fedorov, A. (2017). Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo.Climate Dynamics,49(5), 2093-2113.

De Szoeke, S. P., & Xie, S. P. (2008). The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models.

Journal of Climate, 21(11), 2573-2590.

Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., ... & Zhang, R.

(2006). GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. Journal of Climate, 19(5), 643-674.

Donohoe, A., Marshall, J., Ferreira, D., & Mcgee, D. (2013). The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. Journal of Climate, 26(11), 3597-3618.

Frierson, D. M., & Hwang, Y. T. (2012). Extratropical influence on ITCZ shifts in slab ocean simulations of global warming.Journal of Climate,25(2), 720-733.

Fushan, D., Rucong, Y., Xuehong, Z., Yongqiang, Y., & Jianglong, L. (2005). Impacts of an improved low-level cloud scheme on the eastern Pacific ITCZ-cold tongue complex. Advances in Atmospheric Sciences, 22(4), 559-574.

Guilyardi, E., Delecluse, P., Gualdi, S., & Navarra, A. (2003). Mechanisms for ENSO phase change in a coupled GCM. Journal of climate, 16(8), 1141-1158.

Hawcroft, M., Haywood, J. M., Collins, M., Jones, A., Jones, A. C., & Stephens, G. (2017). Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model.Climate Dynamics,48(7-8), 2279-2295.

28

Hwang, Y. T., & Frierson, D. M. (2013). Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proceedings of the National Academy of Sciences, 110(13), 4935-4940.

Kang, S. M., & Held, I. M. (2012). Tropical precipitation, SSTs and the surface energy budget: A zonally symmetric perspective. Climate Dynamics, 38(9-10), 1917-1924.

Kang, S. M., Held, I. M., Frierson, D. M., & Zhao, M. (2008). The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. Journal of Climate, 21(14), 3521-3532.

Kang, S. M., Hawcroft, M., Xiang, B., Hwang, Y. T., Cazes, G., Codron, F., ... & Yu, S. (2019).

Extratropical–Tropical Interaction Model Intercomparison Project (Etin-Mip): Protocol and Initial Results.Bulletin of the american meteorological society,100(12), 2589-2606.

Kang, S. M., Xie, S. P., Shin, Y., Kim, H., Hwang, Y. T., Stuecker, M. F., ... & Hawcroft, M. (2020).

Walker circulation response to extratropical radiative forcing. Science advances, 6(47), eabd3021.

Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, C. (2016). Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). Journal of Climate, 29(12), 4617-4636.

Kim, H., Kang, S. M., Takahashi, K., Donohoe, A., & Pendergrass, A. G. (2021). Mechanisms of tropical precipitation biases in climate models. Climate Dynamics, 56(1), 17-27.

Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds. Journal of Climate, 6(8), 1587-1606.

Large, W. G., & Danabasoglu, G. (2006). Attribution and impacts of upper-ocean biases in CCSM3.

Journal of Climate, 19(11), 2325-2346.

Li, G., & Xie, S. P. (2012). Origins of tropical wide SST biases in CMIP multi model ensembles. ‐ ‐ Geophysical research letters, 39(22).

Li, G., & Xie, S. P. (2014). Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. Journal of Climate, 27(4), 1765-1780.

Lin, J. L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. Journal of Climate, 20(18), 4497-4525.

Lindzen, R. S., & Nigam, S. (1987). On the role of sea surface temperature gradients in forcing low- level winds and convergence in the tropics. Journal of the Atmospheric Sciences, 44(17), 2418-2436.

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., ... & Kato, S. (2018).

Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product.Journal of Climate,31(2), 895-918.

29

Ma, C. C., Mechoso, C. R., Robertson, A. W., & Arakawa, A. (1996). Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study. Journal of Climate, 9(7), 1635-1645.

Mechoso, C. R., Robertson, A. W., Barth, N., Davey, M. K., Delecluse, P., Gent, P. R., ... & Tribbia, J. J. (1995). The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Monthly Weather Review, 123(9), 2825-2838.

Mechoso, C. R., Losada, T., Koseki, S., Mohino Harris, E., Keenlys‐ ide, N., Castaño Tierno, A., ... ‐

& Toniazzo, T. (2016). Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophysical Research Letters, 43(20), 11- 057.

Moum, J. N., Perlin, A., Nash, J. D., & McPhaden, M. J. (2013). Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing.Nature,500(7460), 64-67.

Nam, C., Bony, S., Dufresne, J. L., & Chepfer, H. (2012). The ‘too few, too bright’ tropical low‐

cloud problem in CMIP5 models. Geophysical Research Letters, 39(21).

Oueslati, B., & Bellon, G. (2015). The double ITCZ bias in CMIP5 models: Interaction between SST, large-scale circulation and precipitation. Climate dynamics, 44(3-4), 585-607.

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of climate, 15(13), 1609-1625.

Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., ... & Vidale, P. L.

(2019). Description of the resolution hierarchy of the global coupled HadGEM3-GC3. 1 model as used in CMIP6 HighResMIP experiments.Geoscientific Model Development,12(12), 4999-5028.

Seager, R., Cane, M., Henderson, N., Lee, D. E., Abernathey, R., & Zhang, H. (2019). Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases.

Nature Climate Change, 9(7), 517-522.

Shukla, J., DelSole, T., Fennessy, M., Kinter, J., & Paolino, D. (2006). Climate model fidelity and projections of climate change. Geophysical Research Letters, 33(7).

Takahashi, K., & Battisti, D. S. (2007). Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. Journal of Climate, 20(14), 3434- 3451.

Tian, B. (2015). Spread of model climate sensitivity linked to double Intertropical Convergence ‐ Zone bias. Geophysical Research Letters, 42(10), 4133-4141.

Tian, B., & Dong, X. (2020). The double ITCZ bias in CMIP3, CMIP5, and CMI‐ P6 models based on annual mean precipitation. Geophysical Research Letters, 47(8), e2020GL087232.

Vecchi, G. A., & Soden, B. J. (2007). Global warming and the weakening of the tropical circulation.

Journal of Climate, 20(17), 4316-4340.

30

Wang, C., Zhang, L., Lee, S. K., Wu, L., & Mechoso, C. R. (2014). A global perspective on CMIP5 climate model biases. Nature Climate Change, 4(3), 201-205.

Wittenberg, A. T., Rosati, A., Lau, N. C., & Ploshay, J. J. (2006). GFDL's CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. Journal of Climate, 19(5), 698-722.

Xiang, B., Zhao, M., Held, I. M., & Golaz, J. C. (2017). Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations. Geophysical Research Letters, 44(3), 1520-1527.

Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010), Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4), 966-986.

Xie, P., & Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observationfs, satellite estimates, and numerical model outputs.Bulletin of the american meteorological society,78(11), 2539-2558.

Zhang, X., Liu, H., & Zhang, M. (2015). Double ITCZ in coupled ocean atmosphere models: From ‐ CMIP3 to CMIP5. Geophysical Research Letters, 42(20), 8651-8659.

Zheng, Y., Shinoda, T., Lin, J. L., & Kiladis, G. N. (2011). Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. Journal of Climate, 24(15), 4139-4164.

Zhu, Y., Zhang, R. H., & Sun, J. (2020). North Pacific upper-ocean cold temperature biases in CMIP6 simulations and the role of regional vertical mixing.Journal of Climate,33(17), 7523-7538.

Dalam dokumen Jiheun Lee (Halaman 37-42)

Dokumen terkait