• Tidak ada hasil yang ditemukan

Electro-biocatalytic system for formic acid synthesis

4. Material and methods

4.7. Electro-biocatalytic system for formic acid synthesis

The electro-biocatalytic reactor, electrodes, and experimental setup in this study were similar to our previous paper. 1.5 cm × 2.0 cm of copper plates (for S. oneidensis MR-1), carbon felt (for encapsulated MeFDH1) were used as the working electrode. Ag/AgCl electrode was used as the reference electrodes in the cathode section, while coiled platinum wire was utilized as counter electrodes in the anode section. The protons generated from the electrolysis of H2SO4 (1 mM for S.

oneidensis MR-1, 10mM for encapsulated MeFDH1) by the anode were supplied to the cathode through a proton exchange membrane (Nafion 115, 1.0 cm ×1.5 cm). The experiments were conducted under potentiostatic control using MultiEmStat (PalmSens BV, Houten, The Netherlands)

28

and Multitrace software control. The cathode was polarized at -0.75 vs. Ag/AgCl reference electrode.8 The current was recorded every 10 seconds for system control as well as Faraday efficiency analysis.

The formic acid synthesis was performed in the cathode reactor by purging gaseous CO2 (99.999%

purity at flow rate of 1 ml/sec). 0.2 M potassium phosphate and 0.2 M MOPS buffer were used for S.oneidensis MR-1 and encapsulated MeFDH1 respectively (adjusted pH = 7.0 by KOH). Whole-cell S. oneidensis MR-1 (wet-cell weight of 0.5 g) and 10 mM methyl viologen (MV) as an electron mediator were added to the above reaction solution to final volume of 10 mL. In case of encapsulated MeFDH1, encapsulated MeFDH1 and 10 mM ethyl viologen (EV) were added to reaction buffer to final volume of 10 ml. The reaction was performed at room temperature (~25 °C) and stirred at 300 rpm.

The synthesized formate was analyzed by HPLC (i.e., Agilent 1200 series with Refractive Index detector (RID) and Rezex ROA-Organic Acid H+ (8%) column using 5 mM H2SO4 (0.6 mL/min) as the mobile phase. To prepare the sample for HPLC analysis, 15 L of H2SO4 (6 M) was added to reaction sample (150 L) to quench the reaction, which was then centrifuged at 10,000 rpm for 1 minute to remove cell pellet. The broth was further filtered with a 0.2 m hydrophilic filter. For each analysis, 20 L samples were injected and formate was detected at 13.8 min in our analysis conditions.

29

References

1. fossil CO2 and GHG emissions of all world countries EUR 28766 EN; Luxembourg, 2017.

2. Hunt, A. J.; Sin, E. H.; Marriott, R.; Clark, J. H., Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 2010, 3 (3), 306-22.

3. Davis, S. J.; Caldeira, K., Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences 2010, 107 (12), 5687-5692.

4. Quadrelli, E. A.; Centi, G.; Duplan, J. L.; Perathoner, S., Carbon dioxide recycling: emerging large-scale technologies with industrial potential. ChemSusChem 2011, 4 (9), 1194-215.

5. Dominguez-Ramos, A.; Singh, B.; Zhang, X.; Hertwich, E. G.; Irabien, A., Global warming footprint of the electrochemical reduction of carbon dioxide to formate. Journal of Cleaner Production 2015, 104, 148-155.

6. Otto, A.; Grube, T.; Schiebahn, S.; Stolten, D., Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy & Environmental Science 2015, 8 (11), 3283-3297.

7. Global Roadmap for Implementing CO2 utilization; Innovation for Cool Earth Forum: CO2 Science and The Global CO2 Initiative, 2016.

8. Hwang, H.; Yeon, Y. J.; Lee, S.; Choe, H.; Jang, M. G.; Cho, D. H.; Park, S.; Kim, Y. H., Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst. Bioresour Technol 2015, 185, 35-9.

9. Choe, H.; Joo, J. C.; Cho, D. H.; Kim, M. H.; Lee, S. H.; Jung, K. D.; Kim, Y. H., Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas. PLoS One 2014, 9 (7), e103111.

10. Chen, Z.; Wang, N.; Yao, S.; Liu, L., The flaky Cd film on Cu plate substrate: An active and efficient electrode for electrochemical reduction of CO 2 to formate. Journal of CO2 Utilization 2017, 22, 191-196.

11. Alvarez-Guerra, M.; Quintanilla, S.; Irabien, A., Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chemical Engineering Journal 2012, 207-208, 278-284.

12. Fei, H.; Sampson, M. D.; Lee, Y.; Kubiak, C. P.; Cohen, S. M., Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework.

Inorg Chem 2015, 54 (14), 6821-8.

13. Barin, R.; Biria, D.; Rashid-Nadimi, S.; Asadollahi, M. A., Enzymatic CO2 reduction to formate by formate dehydrogenase from Candida boidinii coupling with direct electrochemical regeneration of NADH. Journal of CO2 Utilization 2018, 28, 117-125.

30

14. Eguchi, S. Y.; Nishio, N.; Nagai, S., Formic acid production from H2 and bicarbonate by a formateutilizing methanogen. Applied Microbiology and Biotechnology 1985, 22 (2), 148-151.

15. Müller, K. S. a. V., Direct and reversible hydrogenation of co2 to formate by a bacterial carbon dioxide reductase. SCIENCE 2013, 342 (6164), 1382-1385.

16. Alissandratos, A.; Kim, H. K.; Easton, C. J., Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts. Bioresour Technol 2014, 164, 7-11.

17. Choi, E.-G.; Yeon, Y. J.; Min, K.; Kim, Y. H., Communication—CO2Reduction to Formate:

An Electro-Enzymatic Approach Using a Formate Dehydrogenase fromRhodobacter capsulatus.

Journal of The Electrochemical Society 2018, 165 (9), H446-H448.

18. Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L.;

Saffarini, D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M., Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008, 6 (8), 592-603.

19. TERRY E. MEYER, A. I. T., ISABEL VANDENBERGHE, LINA DE SMET, DMITRIJ FRISHMAN, KENNETH H. NEALSON, MICHAEL A. CUSANOVICH, JOZEF J. VAN BEEUMEN, Identification of 42 possible cytochrome c genes in the shewanella oneidensis genome and characterization of six soluble cytochromes. A Journal of Integrative Biology 2004, 8.

20. Heidelberg, J. F.; Paulsen, I. T.; Nelson, K. E.; Gaidos, E. J.; Nelson, W. C.; Read, T. D.;

Eisen, J. A.; Seshadri, R.; Ward, N.; Methe, B.; Clayton, R. A.; Meyer, T.; Tsapin, A.; Scott, J.; Beanan, M.; Brinkac, L.; Daugherty, S.; DeBoy, R. T.; Dodson, R. J.; Durkin, A. S.; Haft, D. H.; Kolonay, J. F.;

Madupu, R.; Peterson, J. D.; Umayam, L. A.; White, O.; Wolf, A. M.; Vamathevan, J.; Weidman, J.;

Impraim, M.; Lee, K.; Berry, K.; Lee, C.; Mueller, J.; Khouri, H.; Gill, J.; Utterback, T. R.; McDonald, L. A.; Feldblyum, T. V.; Smith, H. O.; Venter, J. C.; Nealson, K. H.; Fraser, C. M., Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 2002, 20 (11), 1118-23.

21. Kane, A. L.; Brutinel, E. D.; Joo, H.; Maysonet, R.; VanDrisse, C. M.; Kotloski, N. J.;

Gralnick, J. A., Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor. J Bacteriol 2016, 198 (8), 1337-46.

22. Meshulam-Simon, G.; Behrens, S.; Choo, A. D.; Spormann, A. M., Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microbiol 2007, 73 (4), 1153-65.

23. Pinchuk, G. E.; Geydebrekht, O. V.; Hill, E. A.; Reed, J. L.; Konopka, A. E.; Beliaev, A. S.;

Fredrickson, J. K., Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 2011, 77 (23), 8234-40.

31

24. Jang, J.; Jeon, B. W.; Kim, Y. H., Bioelectrochemical conversion of CO2 to value added product formate using engineered Methylobacterium extorquens. Sci Rep 2018, 8 (1), 7211.

25. Mahajan, R.; Gupta, V.; Sharma, J., Comparison and suitability of gel matrix for entrapping higher content of enzymes for commercial applications. Indian Journal of Pharmaceutical Sciences 2010, 72 (2), 223-228.

26. Lu, Y.; Jiang, Z.-y.; Xu, S.-w.; Wu, H., Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate–silica hybrid gel. Catalysis Today 2006, 115 (1-4), 263-268.

27. Zhang, S.; Shang, W.; Yang, X.; Zhang, S.; Zhang, X.; Chen, J., Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate.

Bulletin of the Korean Chemical Society 2013, 34 (9), 2741-2746.

28. Hiemetsberger, D. Enzymatic reduction of carbon dioxide to formate. Johannes Kepler Universität, 2013.

29. Datta, S.; Christena, L. R.; Rajaram, Y. R., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.

30. Ana Blandino, M. M. a., Domingo Cantero, Glucose oxidase release from calcium alginate gel capsules. Enzyme and Microbial Technology 2000, 27 (3-5), 319-324.

31. A.Blandino, M. M. a., D.Cantero, immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry 2001, 36 (7), 601–606.

32. Hyung JooKim, H. S., Moon SikHyun, In SeopChang, MiaKim, Byung HongKim, A mediator-less microbial fuel cell using a metal reducing bacterium, shewanella putrefaciens. Enzyme and Microbial Technology 2002, 30 (2), 145-152.

33. Heidelberg, A. S. B. D. K. T. T. K. H. L. C. C. B. G. L. A. E. M. J. F., Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. A Journal of Integrative Biology 2004, 6.

34. KENNETH H. NEALSON, D. P. M., AND DAAD A. SAFFARINI, Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Applied Environmental Microbiology 1995, 61, 1551-1554.

35. Torsten Reda, C. M. P., Nerilie J. Abram, and Judy Hirst, Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proceedings of the National Academy of Sciences 2008, 105, 10654-10658.

36. Veliky, H. T. M. M. I. A., Diffusion Characteristics of Substrates in Ca-Alginate Gel Beads.

Biotechnology and Bioengineering 1984, 26 (1), 53-58.

37. Ine ´s Garbayo, R. L. n., Javier Vigara, Carlos Vı ´lchez, diffusion characteristics of nitrate

Dokumen terkait