• Tidak ada hasil yang ditemukan

Chapter 5. Summary and Future perspective

5.2 Future perspective

Wearable technologies have been developed based on micro/nanostructured responsive polymers to solve the limitations of conventional sensors and actuators, such as rigidity, low sensitivity, slow response, and bio-incompatibility. We achieved physical and chemical sensors and dynamic thermal insulators with high sensitivity, fast response, great durability by introducing polymer microgels, ion- conducting hydrogels, and hierarchical micro/nanoporous structures. Although the resulting sensors and actuators showed the outstanding performance with high flexibility, the factors should be considered further such as multifunctionality, wide detection range, linear sensitivity, self-powered system, biocompatibility, and biodegradability. For example, the integration of responsive polymers that respond to different stimuli or transition points gives advantages in terms of the multifunctionality and the wide detection range to sensors or actuators. The linear sensitivity is also helpful to minimize the device size by removing additional steps of data processing and reducing the energy consumption. In addition, reusable sensors and actuators can be achieved using fully reversible responsive polymers or 2-way SMPs, which leads the cost reduction. The miniaturization of devices has an advantage in wearable systems, hence, the energy-harvesting technology can be applied to the self-powered sensors for the operation without external power sources. Furthermore, the use of biocompatible or biodegradable responsive polymers makes wearable and even implantable sensors, which is the essential characteristic for the applications to biomedical sensors and prosthetics.

125

References

1. Ha, M.; Lim, S.; Ko, H., Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B 2018, 6, 4043-4064.

2. Rich, S. I.; Wood, R. J.; Majidi, C., Untethered soft robotics. Nat. Electron. 2018, 1, 102-112.

3. Duduta, M.; Wood, R. J.; Clarke, D. R., Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch. Adv. Mater. 2016, 28, 8058-8063.

4. Schwartz, G.; Tee, B. C.-K.; Mei, J.; Appleton, A. L.; Kim, D. H.; Wang, H.; Bao, Z., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.

5. Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S., Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv.

Mater. 2016, 28, 930-935.

6. Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.;

Hyeon, T.; Kim, D.-H., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314.

7. Kim, Y. S.; Liu, M.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T., Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015, 14, 1002-1007.

8. Jiang, S.; Liu, F.; Lerch, A.; Ionov, L.; Agarwal, S., Unusual and superfast temperature‐triggered actuators. Adv. Mater. 2015, 27, 4865-4870.

9. Yuk, H.; Lin, S.; Ma, C.; Takaffoli, M.; Fang, N. X.; Zhao, X., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 2017, 8, 14230.

10. Shian, S.; Bertoldi, K.; Clarke, D. R., Dielectric elastomer based “grippers” for soft robotics.

Adv. Mater. 2015, 27, 6814-6819.

11. Yu, C.; Li, Y.; Zhang, X.; Huang, X.; Malyarchuk, V.; Wang, S.; Shi, Y.; Gao, L.; Su, Y.;

Zhang, Y., Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins.

Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 12998-13003.

12. Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S., Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 2016, 10, 1788-1794.

126

13. Wei, M.; Gao, Y.; Li, X.; Serpe, M. J., Stimuli-responsive polymers and their applications.

Polym. Chem. 2017, 8, 127-143.

14. Clark, E.; Lipson, J., LCST and UCST behavior in polymer solutions and blends. Polymer 2012, 53, 536-545.

15. Heskins, M.; Guillet, J. E., Solution properties of poly (N-isopropylacrylamide). Journal of Macromolecular Science—Chemistry 1968, 2, 1441-1455.

16. Hu, L.; Zhang, Q.; Li, X.; Serpe, M. J., Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 2019, 6, 1774-1793.

17. Zhao, Y.-L.; Stoddart, J. F., Azobenzene-based light-responsive hydrogel system. Langmuir 2009, 25, 8442-8446.

18. Kwangmettatam, S.; Kudernac, T., Light-fuelled reversible expansion of spiropyran-based vesicles in water. Chem. Commun. 2018, 54, 5311-5314.

19. Yakhmi, J.; Saxena, V.; Aswal, D., Conducting polymer sensors, actuators and field-effect transistors. Functional Materials: Preparation, Processing and Applications 2012, 61-110.

20. O’Halloran, A.; O’malley, F.; McHugh, P., A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 2008, 104, 9.

21. Xia, F.; Zuo, X.; Yang, R.; Xiao, Y.; Kang, D.; Vallée-Bélisle, A.; Gong, X.; Yuen, J. D.; Hsu, B. B.; Heeger, A. J., Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 10837-10841.

22. Teyssier, J.; Saenko, S. V.; Van Der Marel, D.; Milinkovitch, M. C., Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

23. Mäthger, L. M.; Denton, E. J.; Marshall, N. J.; Hanlon, R. T., Mechanisms and behavioural functions of structural coloration in cephalopods. J. R. Soc. Interface 2009, 6, S149-S163.

24. Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C., Stimuli- responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 2008, 319, 1370- 1374.

25. Ridding, M.; Brouwer, B.; Miles, T.; Pitcher, J.; Thompson, P., Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp.

Brain Res. 2000, 131, 135-143.

26. Chatzigeorgiou, M.; Bang, S.; Hwang, S. W.; Schafer, W. R., tmc-1 encodes a sodium-

127

sensitive channel required for salt chemosensation in C. elegans. Nature 2013, 494, 95-99.

27. Zhao, G. Q.; Zhang, Y.; Hoon, M. A.; Chandrashekar, J.; Erlenbach, I.; Ryba, N. J.; Zuker, C.

S., The receptors for mammalian sweet and umami taste. Cell 2003, 115, 255-266.

28. Guo, Q.; Dai, E.; Han, X.; Xie, S.; Chao, E.; Chen, Z., Fast nastic motion of plants and bioinspired structures. J. R. Soc. Interface 2015, 12, 0598.

29. Zhu, Q.; Jin, Y.; Wang, W.; Sun, G.; Wang, D., Bioinspired Smart Moisture Actuators Based on Nanoscale Cellulose Materials and Porous, Hydrophilic EVOH Nanofibrous Membranes. ACS Appl. Mater. Interfaces 2019, 11, 1440-1448.

30. Forterre, Y.; Skotheim, J. M.; Dumais, J.; Mahadevan, L., How the Venus flytrap snaps.

Nature 2005, 433, 421-425.

31. Volkov, A. G.; Adesina, T.; Jovanov, E., Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signaling Behav. 2007, 2, 139-145.

32. Volkov, A. G.; Foster, J. C.; Ashby, T. A.; Walker, R. K.; Johnson, J. A.; Markin, V. S., Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant, Cell Environ. 2010, 33, 163-173.

33. Dawson, C.; Vincent, J. F.; Rocca, A.-M., How pine cones open. Nature 1997, 390, 668-668.

34. Song, K.; Yeom, E.; Seo, S.-J.; Kim, K.; Kim, H.; Lim, J.-H.; Lee, S. J., Journey of water in pine cones. Sci. Rep. 2015, 5, 9963.

35. Chou, H.-H.; Nguyen, A.; Chortos, A.; To, J. W.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W.-G.;

Tok, J. B.-H.; Bao, Z., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

36. Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z. L., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

37. Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H., Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, e1500661.

38. Roux, B.; Allen, T.; Berneche, S.; Im, W., Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 2004, 37, 15-103.

39. Zhang, H.; Hou, X.; Hou, J.; Zeng, L.; Tian, Y.; Li, L.; Jiang, L., Synthetic Asymmetric‐Shaped Nanodevices with Symmetric pH‐Gating Characteristics. Adv. Funct. Mater.

2015, 25, 1102-1110.

128

40. Ma, S.; Lee, H.; Liang, Y.; Zhou, F., Astringent mouthfeel as a consequence of lubrication failure. Angew. Chem. Int. Ed. 2016, 55, 5793-5797.

41. Ushiki, T., Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. rch. Histol. Cytol. 2002, 65, 109-126.

42. Ma, M.; Guo, L.; Anderson, D. G.; Langer, R., Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339, 186-189.

43. Lee, B. P.; Konst, S., Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv. Mater. 2014, 26, 3415-3419.

44. Guo, D.-J.; Liu, R.; Cheng, Y.; Zhang, H.; Zhou, L.-M.; Fang, S.-M.; Elliott, W. H.; Tan, W., Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer–metal composite actuator. ACS Appl. Mater. Interfaces 2015, 7, 5480-5487.

45. Pikul, J.; Li, S.; Bai, H.; Hanlon, R.; Cohen, I.; Shepherd, R., Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 2017, 358, 210-214.

46. Xu, C.; Stiubianu, G. T.; Gorodetsky, A. A., Adaptive infrared-reflecting systems inspired by cephalopods. Science 2018, 359, 1495-1500.

47. Fu, F.; Chen, Z.; Zhao, Z.; Wang, H.; Shang, L.; Gu, Z.; Zhao, Y., Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 5900-5905.

48. Qian, B.; Zheng, Z.; Michailids, M.; Fleck, N.; Bilton, M.; Song, Y.; Li, G.; Shchukin, D., Mussel-inspired self-healing coatings based on polydopamine-coated nanocontainers for corrosion protection. ACS Appl. Mater. Interfaces 2019, 11, 10283-10291.

49. Liu, F.; Urban, M. W., Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010, 35, 3-23.

50. Jain, K.; Vedarajan, R.; Watanabe, M.; Ishikiriyama, M.; Matsumi, N., Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers. Polym. Chem. 2015, 6, 6819-6825.

51. Muthyala, R., Chemistry and applications of leuco dyes. Springer Science & Business Media:

2006.

52. Stoddard, B. L.; Bruhnke, J.; Porter, N.; Ringe, D.; Petsko, G. A., Structure and activity of two photoreversible cinnamates bound to chymotrypsin. Biochemistry 1990, 29, 4871-4879.

53. Mauro, M., Gel-based soft actuators driven by light. J. Mater. Chem. B 2019, 7, 4234-4242.

54. Le, T.-H.; Kim, Y.; Yoon, H., Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9, 150.

129

55. Liu, F.; Urban, M. W., Dual temperature and pH responsiveness of poly (2-(N, N- dimethylamino) ethyl methacrylate-co-n-butyl acrylate) colloidal dispersions and their films.

Macromolecules 2008, 41, 6531-6539.

56. Schattling, P.; Jochum, F. D.; Theato, P., Multi-stimuli responsive polymers–the all-in-one talents. Polym. Chem. 2014, 5, 25-36.

57. Stuart, M. A. C.; Huck, W. T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.

B.; Szleifer, I.; Tsukruk, V. V.; Urban, M., Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101-113.

58. Zhou, T.; Qi, H.; Han, L.; Barbash, D.; Li, C. Y., Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nat. Commun. 2016, 7, 11119.

59. Cummins, C.; Gangnaik, A.; Kelly, R. A.; Borah, D.; O'Connell, J.; Petkov, N.; Georgiev, Y.

M.; Holmes, J. D.; Morris, M. A., Aligned silicon nanofins via the directed self-assembly of PS-b- P4VP block copolymer and metal oxide enhanced pattern transfer. Nanoscale 2015, 7, 6712-6721.

60. Mun, S. C.; Park, J. J.; Park, Y. T.; Kim, D. Y.; Lee, S. W.; Cobos, M.; Ye, S. J.; Macosko, C.

W.; Park, O. O., High electrical conductivity and oxygen barrier property of polymer-stabilized graphene thin films. Carbon 2017, 125, 492-499.

61. Koromilas, N. D.; Anastasopoulos, C.; Oikonomou, E. K.; Kallitsis, J. K., Preparation of Porous Polymeric Membranes Based on a Pyridine Containing Aromatic Polyether Sulfone. Polymers 2019, 11, 59.

62. Kim, Y.; Kim, D.; Jang, G.; Kim, J.; Lee, T. S., Fluorescent, stimuli-responsive, crosslinked PNIPAM-based microgel. Sens. Actuators, B 2015, 207, 623-630.

63. Ballauff, M.; Lu, Y., "Smart" nanoparticles: Preparation, characterization and applications.

Polymer 2007, 48, 1815-1823.

64. Tokarev, I.; Motornov, M.; Minko, S., Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. J. Mater.

Chem. 2009, 19, 6932-6948.

65. Luzinov, I.; Minko, S.; Tsukruk, V. V., Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter 2008, 4, 714-725.

66. Kharlampieva, E.; Kozlovskaya, V.; Sukhishvili, S. A., Layer‐by‐layer hydrogen‐bonded polymer films: from fundamentals to applications. Adv. Mater. 2009, 21, 3053-3065.

67. Lee, Y. M.; Shim, J. K., Preparation of pH/temperature responsive polymer membrane by

130

plasma polymerization and its riboflavin permeation. Polymer 1997, 38, 1227-1232.

68. Motornov, M.; Sheparovych, R.; Lupitskyy, R.; MacWilliams, E.; Hoy, O.; Luzinov, I.;

Minko, S., Stimuli‐responsive colloidal systems from mixed brush‐coated nanoparticles. Adv. Funct.

Mater. 2007, 17, 2307-2314.

69. Wei, J.; Cai, J.; Li, Y.; Wu, B.; Gong, X.; Ngai, T., Investigation of cell behaviors on thermo- responsive PNIPAM microgel films. Colloids Surf., B 2015, 132, 202-207.

70. Xia, L.-W.; Xie, R.; Ju, X.-J.; Wang, W.; Chen, Q.; Chu, L.-Y., Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013, 4, 2226.

71. Mura, S.; Nicolas, J.; Couvreur, P., Stimuli-responsive nanocarriers for drug delivery. Nat.

Mater. 2013, 12, 991-1003.

72. Zheng, P.; Jiang, X.; Zhang, X.; Zhang, W.; Shi, L., Formation of gold@ polymer core− shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer. Langmuir 2006, 22, 9393-9396.

73. Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z., Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 8260-8265.

74. Jankowska, D. A.; Bannwarth, M. B.; Schulenburg, C.; Faccio, G.; Maniura-Weber, K.;

Rossi, R. M.; Scherer, L.; Richter, M.; Boesel, L. F., Simultaneous detection of pH value and glucose concentrations for wound monitoring applications. Biosens. Bioelectron. 2017, 87, 312-319.

75. Dargaville, T. R.; Farrugia, B. L.; Broadbent, J. A.; Pace, S.; Upton, Z.; Voelcker, N. H., Sensors and imaging for wound healing: A review. Biosens. Bioelectron. 2013, 41, 30-42.

76. Hu, X.; Yu, J.; Qian, C.; Lu, Y.; Kahkoska, A. R.; Xie, Z.; Jing, X.; Buse, J. B.; Gu, Z., H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS Nano 2017, 11, 613-620.

77. Noh, K. G.; Park, S. Y., Biosensor Array of Interpenetrating Polymer Network with Photonic Film Templated from Reactive Cholesteric Liquid Crystal and Enzyme‐Immobilized Hydrogel Polymer. Adv. Funct. Mater. 2018, 28, 1707562.

78. Yamato, M.; Konno, C.; Utsumi, M.; Kikuchi, A.; Okano, T., Thermally responsive polymer- grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 2002, 23, 561-567.

79. Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217-233.

131

80. Li, G.; Wang, Y.; Wang, S.; Liu, Z.; Liu, Z.; Jiang, J., A Thermo‐and Moisture‐Responsive Zwitterionic Shape Memory Polymer for Novel Self‐Healable Wound Dressing Applications.

Macromol. Mater. Eng. 2019, 304, 1800603.

81. Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J., A functional chitosan- based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018, 8, 7533-7549.

82. Kaiser, S.; Radl, S.; Manhart, J.; Ayalur-Karunakaran, S.; Griesser, T.; Moser, A.; Ganser, C.;

Teichert, C.; Kern, W.; Schlögl, S., Switching “on” and “off” the Adhesion in Stimuli-responsive Elastomers. Soft Matter 2018, 14, 2547-2559.

83. Yi, H.; Seong, M.; Sun, K.; Hwang, I.; Lee, K.; Cha, C.; Kim, T. i.; Jeong, H. E., Wet‐Responsive, Reconfigurable, and Biocompatible Hydrogel Adhesive Films for Transfer Printing of Nanomembranes. Adv. Funct. Mater. 2018, 28, 1706498.

84. Li, B.; Whalen, J. J.; Humayun, M. S.; Thompson, M. E., Reversible Bioadhesives Using Tannic Acid Primed Thermally‐Responsive Polymers. Adv. Funct. Mater. 2019, 1907478.

85. Yuan, D.; Delpierre, S.; Ke, K.; Raquez, J.-M.; Dubois, P.; Manas-Zloczower, I., Biomimetic Water-Responsive Self-Healing Epoxy with Tunable Properties. ACS Appl. Mater. Interfaces 2019, 11, 17853-17862.

86. Qin, H.; Zhang, T.; Li, N.; Cong, H.-P.; Yu, S.-H., Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 2019, 10, 2202.

87. Huang, X.; Sun, Y.; Soh, S., Stimuli-Responsive Surfaces for Tunable and Reversible Control of Wettability. Adv. Mater. 2015, 27, 4062-4068.

88. Guselnikova, O.; Postnikov, P.; Elashnikov, R.; Svorcik, V.; Lyutakov, O., Multiresponsive Wettability Switching on Polymer Surface: Effect of Surface Chemistry and/or Morphology Tuning.

Adv. Mater. Interfaces 2019, 6, 1801937.

89. Palza, H.; Zapata, P. A.; Angulo-Pineda, C., Electroactive smart polymers for biomedical applications. Materials 2019, 12, 277.

90. Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q., Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc. Chem. Res. 2019, 52, 316-325.

91. Zhuo, S.; Zhao, Z.; Xie, Z.; Hao, Y.; Xu, Y.; Zhao, T.; Li, H.; Knubben, E. M.; Wen, L.; Jiang, L.; Liu, M., Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Sci. Adv. 2020, 6, eaax1464.

132

92. Sun, Y.; Chen, L.; Jiang, Y.; Zhang, X.; Yao, X.; Soh, S., Soft stimuli-responsive grippers and machines with high load-to-weight ratios. Mater. Horiz. 2019, 6, 160-168.

93. Chen, T.; Fang, Q. S.; Zhong, Q.; Chen, Y. Y.; Wang, J. P., Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles. Polymers 2015, 7, 909-920.

94. Hu, J.; Meng, H.; Li, G.; Ibekwe, S. I., A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 2012, 21, 053001.

95. Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.;

Islam, A., Epidermal electronics. Science 2011, 333, 838-843.

96. An, S.; Lee, M. W.; Yarin, A. L.; Yoon, S. S., A review on corrosion-protective extrinsic self- healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks.

Chem. Eng. J. 2018, 344, 206-220.

97. Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K., Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv.

2016, 2, e1601473.

98. Nakata, S.; Arie, T.; Akita, S.; Takei, K., Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat pH and Skin Temperature Monitoring. ACS Sensors 2017, 2, 443-448.

99. Evans, S. S.; Repasky, E. A.; Fisher, D. T., Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 2015, 15, 335–349.

100. Chen, Y.; Lu, B.; Chen, Y.; Feng, X., Breathable and stretchable temperature sensors inspired by skin. Sci. Rep. 2015, 5, 11505.

101. Trung, T. Q.; Ramasundaram, S.; Hwang, B. U.; Lee, N. E., An All‐Elastomeric Transparent and Stretchable Temperature Sensor for Body‐Attachable Wearable Electronics. Adv. Mater. 2016, 28, 502-509.

102. Ren, X.; Pei, K.; Peng, B.; Zhang, Z.; Wang, Z.; Wang, X.; Chan, P. K., A Low‐Operating‐Power and Flexible Active‐Matrix Organic‐Transistor Temperature‐Sensor Array. Adv.

Mater. 2016, 28, 4832-4838.

103. Rakow, N. A.; Suslick, K. S., A colorimetric sensor array for odour visualization. Nature 2000, 406, 710-713.

104. Wang, H.; Zhang, K.-Q., Photonic crystal structures with tunable structure color as

133 colorimetric sensors. Sensors 2013, 13, 4192-4213.

105. Kim, G.; Cho, S.; Chang, K.; Kim, W. S.; Kang, H.; Ryu, S. P.; Myoung, J.; Park, J.; Park, C.;

Shim, W., Spatially Pressure‐Mapped Thermochromic Interactive Sensor. Adv. Mater. 2017, 29, 1606120.

106. Tokunaga, S.; Itoh, Y.; Yaguchi, Y.; Tanaka, H.; Araoka, F.; Takezoe, H.; Aida, T., Electrophoretic Deposition for Cholesteric Liquid‐Crystalline Devices with Memory and Modulation of Reflection Colors. Adv. Mater. 2016, 28, 4077-4083.

107. González, A.; Noguez, C.; Beránek, J.; Barnard, A., Size, shape, stability, and color of plasmonic silver nanoparticles. J. Phys. Chem. C 2014, 118, 9128-9136.

108. Kristensen, A.; Yang, J. K.; Bozhevolnyi, S. I.; Link, S.; Nordlander, P.; Halas, N. J.;

Mortensen, N. A., Plasmonic colour generation. Nat. Rev. Mater. 2016, 2, 16088.

109. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.

110. Ghosh, S. K.; Pal, T., Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 2007, 107, 4797-4862.

111. Maji, S.; Cesur, B.; Zhang, Z.; De Geest, B. G.; Hoogenboom, R., Poly (N- isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors. Polym.

Chem. 2016, 7, 1705-1710.

112. Lim, S.; Song, J. E.; La, J. A.; Cho, E. C., Gold nanospheres assembled on hydrogel colloids display a wide range of thermoreversible changes in optical bandwidth for various plasmonic-based color switches. Chem. Mater. 2014, 26, 3272-3279.

113. Song, J. E.; Cho, E. C., Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids. Sci. Rep. 2016, 6, 34622.

114. Sigolaeva, L. V.; Gladyr, S. Y.; Gelissen, A. P.; Mergel, O.; Pergushov, D. V.; Kurochkin, I.

N.; Plamper, F. A.; Richtering, W., Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications. Biomacromolecules 2014, 15, 3735- 3745.

115. Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H. j.; Ko, H., Octopus‐Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes. Adv. Mater. 2016, 28, 7457-7465.

116. Ko, H.; Javey, A., Smart Actuators and Adhesives for Reconfigurable Matter. Acc. Chem. Res.

134 2017, 50, 691-702.

117. Bastús, N. G.; Comenge, J.; Puntes, V., Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.

Langmuir 2011, 27, 11098-11105.

118. Guo, L.; Xu, Y.; Ferhan, A. R.; Chen, G.; Kim, D.-H., Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J. Am. Chem.

Soc. 2013, 135, 12338-12345.

119. Van Durme, K.; Rahier, H.; Van Mele, B., Influence of additives on the thermoresponsive behavior of polymers in aqueous solution. Macromolecules 2005, 38, 10155-10163.

120. Das, M.; Sanson, N.; Fava, D.; Kumacheva, E., Microgels loaded with gold nanorods:

photothermally triggered volume transitions under physiological conditions. Langmuir 2007, 23, 196- 201.

121. Cheng, J.; Shan, G.; Pan, P., Temperature and pH-dependent swelling and copper (II) adsorption of poly (N-isopropylacrylamide) copolymer hydrogel. RSC Adv. 2015, 5, 62091-62100.

122. Kim, T.; Lee, K.; Gong, M.-s.; Joo, S.-W., Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 2005, 21, 9524-9528.

123. Yan, Y.; Liu, L.; Cai, Z.; Xu, J.; Xu, Z.; Zhang, D.; Hu, X., Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon. Sci. Rep. 2016, 6, 31328.

124. Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X.; Zhao, X., Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028.

125. Mock, J. J.; Smith, D. R.; Schultz, S., Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters 2003, 3, 485-491.

126. Franklin, J.; Wang, Z. Y., Refractive index matching: a general method for enhancing the optical clarity of a hydrogel matrix. Chem. Mater. 2002, 14, 4487-4489.

127. Chen, M.; Zhou, L.; Guan, Y.; Zhang, Y., Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates. Angew. Chem. Int. Ed. 2013, 52, 9961-9965.

128. Liu, Y.; Han, X.; He, L.; Yin, Y., Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem. Int. Ed. 2012, 51, 6373-6377.

129. Ding, T.; Valev, V. K.; Salmon, A. R.; Forman, C. J.; Smoukov, S. K.; Scherman, O. A.;

Frenkel, D.; Baumberg, J. J., Light-induced actuating nanotransducers. Proc. Natl. Acad. Sci. U.S.A.

2016, 113, 5503-5507.

135

130. Gao, L.; Zhang, Y.; Malyarchuk, V.; Jia, L.; Jang, K.-I.; Webb, R. C.; Fu, H.; Shi, Y.; Zhou, G.; Shi, L., Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 2014, 5, 4938.

131. Chae, S.; Lee, J. P.; Kim, J. M., Mechanically drawable thermochromic and mechanothermochromic polydiacetylene sensors. Adv. Funct. Mater. 2016, 26, 1769-1776.

132. Jin, Y.-J.; Kim, B. S.-I.; Lee, W.-E.; Lee, C.-L.; Kim, H.; Song, K.-H.; Jang, S.-Y.; Kwak, G., Phase-change hybrids for thermo-responsive sensors and actuators. NPG Asia Mater. 2014, 6, e137.

133. Xing, H.; Li, J.; Shi, Y.; Guo, J.; Wei, J., Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mater. Interfaces 2016, 8, 9440-9445.

134. Otake, K.; Inomata, H.; Konno, M.; Saito, S., Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 1990, 23, 283-289.

135. L. M. C. Collins, C. D., The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J. Dent. Res. 1987, 66, 1300-1302.

136. Matsuo, R., Role of saliva in the maintenance of taste sensitivity. Crit. Rev. Food Sci. Nutr.

2000, 11, 216-229.

137. Kandel, E. R.; Schwartz, J. H.; Jessell, T. M.; Siegelbaum, S. A.; Hudspeth, A. J., Principles of neural science. McGraw-hill: New York, 2000; Vol. 4.

138. Wu, X.; Onitake, H.; Huang, Z.; Shiino, T.; Tahara, Y.; Yatabe, R.; Ikezaki, H.; Toko, K., Improved Durability and Sensitivity of Bitterness-Sensing Membrane for Medicines. Sensors 2017, 17, 2541-2554.

139. Tahara, Y.; Ikeda, A.; Maehara, Y.; Habara, M.; Toko, K., Development and evaluation of a miniaturized taste sensor chip. Sensors 2011, 11, 9878-9886.

140. Ahn, S. R.; An, J. H.; Song, H. S.; Park, J. W.; Lee, S. H.; Kim, J. H.; Jang, J.; Park, T. H., Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles. ACS Nano 2016, 10, 7287-7296.

141. Liu, Q. J.; Zhang, D. M.; Zhang, F. N.; Zhao, Y.; Hsia, K. J.; Wang, P., Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sens. Actuators, B 2013, 176, 497-504.

142. Wu, C. S.; Du, L. P.; Zou, L.; Huang, L. Q.; Wang, P., A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers.

Analyst 2013, 138, 5989-5994.

136

143. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K. V.; Peck, A.; Fahad, H. M.;

Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D. H.; Brooks, G. A.; Davis, R. W.; Javey, A., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.

144. Horne, J.; Hayes, J.; Lawless, H. T., Turbidity as a measure of salivary protein reactions with astringent substances. Chem. Senses 2002, 27, 653-659.

145. Zhang, H.; Tsao, R., Dietary polyphenols, oxidative stress and antioxidant and anti- inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33-42.

146. Chung, K. T.; Wong, T. Y.; Wei, C. I.; Huang, Y. W.; Lin, Y., Tannins and human health: A review. Crit. Rev. Food Sci. Nutr 1998, 38, 421-464.

147. Bajec, M. R.; Pickering, G. J., Astringency: mechanisms and perception. Crit. Rev. Food Sci.

Nutr 2008, 48, 858-875.

148. Troszynska, A.; Narolewska, O.; Robredo, S.; Estrella, I.; Hernandez, T.; Lamparski, G.;

Amarowicz, R., The effect of polysaccharides on the astringency induced by phenolic compounds.

Food Qual. Prefer. 2010, 21, 463-469.

149. Xu, R. N.; Ma, S. H.; Lin, P.; Yu, B.; Zhou, F.; Liu, W. M., High Strength Astringent Hydrogels Using Protein as the Building Block for Physically Cross-linked Multi-Network. ACS Appl.

Mater. Interfaces 2018, 10, 7593-7601.

150. Yakubov, G. E.; Papagiannopoulos, A.; Rat, E.; Easton, R. L.; Waigh, T. A., Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin.

Biomacromolecules 2007, 8, 3467-3477.

151. Waigh, T. A.; Papagiannopoulos, A.; Voice, A.; Bansil, R.; Unwin, A. P.; Dewhurst, C. D.;

Turner, B.; Afdhal, N., Entanglement coupling in porcine stomach mucin. Langmuir 2002, 18, 7188- 7195.

152. Chang, M. C.; Tanaka, J., FT-IR study for hydroxyapatite/collagen nanocomposite cross- linked by glutaraldehyde. Biomaterials 2002, 23, 4811-4818.

153. Lasch, P.; Boese, M.; Pacifico, A.; Diem, M., FT-IR spectroscopic investigations of single cells on the subcellular level. Vib. Spectrosc 2002, 28, 147-157.

154. Tuma, R., Raman spectroscopy of proteins: from peptides to large assemblies. J. Raman Spectrosc. 2005, 36, 307-319.

155. Ashton, L.; Pudney, P. D. A.; Blanch, E. W.; Yakubov, G. E., Understanding glycoprotein behaviours using Raman and Raman optical activity spectroscopies: Characterising the entanglement

Dokumen terkait