• Tidak ada hasil yang ditemukan

Chapter 5. Mitochondria Targeting Nanogel System for Drug Delivery

5.5 Conclusions and Future Work

In this research, we synthesize mitochondrial target ligand start from hexaethylene glycol. The ethylene glycol moiety was expected to show high flexibility with biocompatibility in the biological environment. Each end of ligand was modified with mitochondrial targeting functional group. The ligand molecule was assigned by proton NMR spectroscopy. The thiol group of the ligand molecule performed thiol exchange on the surface of self-crosslinked nanogel.

Simple solvent displacement method was performed to encapsulate model drug molecule.

Successful encapsulation in the self-crosslinked nanogel was identified through UV spectroscopy. In this system, DTT was treated for surface crosslinking. However, DiI and DiO co-encapsulated model showed poor surface modification degree with unknown reason. There are several hypotheses regarding this result. In this system, if DiO molecule was not encapsulated in the core of nanogel, but intercalate with polymer molecule makes inhibit to thiol-exchange reaction between surface of nanogel and targeting ligand molecule. The amount of DTT for cross-linking of nanogel also can be the other reason of this phenomenon. To make clear the reason of this result, further experiments regarding DTT concentration is planned to be performed.

Finally, the ability of targeting mitochondria was investigated through confocal microscopy. The result indicates that the nanogel system has an effect on delivering their cargo to mitochondria.

Through this result, we planned detail experiments to get more clear evidence by adjusting concentration of nanogel solution. Further investigation with drug molecule and targeting efficiency will be examined as future work with in vivo experiments.

77

References

1. LaVan, D. A.; McGuire, T.; Langer, R., Small-scale systems for in vivo drug delivery. Nat.

Biotechnol. 2003, 21, 1184-1191.

2. Langer, R., Novel Drug Delivery Systems. Chem. Brit. 1990, 26, 232-238.

3. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug. Discov. 2008, 7, 771-782.

4. McNeil, S. E.; Hanson, P.; Perrie, Y., Optimising transfection efficiency of liposome-DNA complexes: effect of co-lipid, lipid : DNA ratio and complex size. J. Pharm. Pharmacol. 2005, 57, S22-S22.

5. Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.;

Matsumoto, S.; Miyata, Y.; Ohkura, H.; Chin, K.; Baba, S.; Yama, T.; Kannami, A.; Takamatsu, Y.; Ito, K.; Takahashi, K., Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol. 2004, 15, 517-525.

6. Sankhala, K. K.; Mita, A. C.; Adinin, R.; Wood, L.; Beeram, M.; Bullock, S.; Yamagata, N.;

Matsuno, K.; Fujisawa, T.; Phan, A., A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J. Clin. Oncol. 2009, 27.

7. Venturoli, D.; Rippe, B., Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J.

Physiol-Renal. 2005, 288, F605-F613.

8. Matsumura, Y.; Maeda, H., A New Concept for Macromolecular Therapeutics in Cancer- Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer. Res. 1986, 46, 6387-6392.

9. Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

78

10. Gabizon, A.; Shmeeda, H.; Barenholz, Y., Pharmacokinetics of pegylated liposomal doxorubicin - Review of animal and human studies. Clin. Pharmacokinet. 2003, 42, 419-436.

11. Kim, T. Y.; Kim, D. W.; Chung, J. Y.; Shin, S. G.; Kim, S. C.; Heo, D. S.; Kim, N. K.; Bang, Y. J., Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle- formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer. Res. 2004, 10, 3708- 3716.

12. Kamaly, N.; Xiao, Z. Y.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C., Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev.

2012, 41, 2971-3010.

13. (a) Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M. V.; Perez, L. R.; Battaglia, G., Block copolymer nanostructures. Nano Today 2008, 3, 38-46; (b) Denkova, A. G.; Mendes, E.;

Coppens, M. O., Non-equilibrium dynamics of block copolymer micelles in solution: recent insights and open questions. Soft Matter 2010, 6, 2351-2357.

14. Kelley, E. G.; Albert, J. N. L.; Sullivan, M. O.; Epps, T. H., Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 2013, 42, 7057-7071.

15. Yang, J., Viscoelastic wormlike micelles and their applications. Curr. Opin. Colloid. In. 2002, 7, 276-281.

16. Kleber, J. W.; Nash, J. F.; Lee, C. C., Synthetic Polymers as Potential Sustained-Release Coatings. J. Pharm. Sci. 1964, 53, 1519-1521

17. Acharya, S.; Sahoo, S. K., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug. Deliver. Rev. 2011, 63, 170-183.

18. Anderson, J. M.; Shive, M. S., Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug. Deliver. Rev. 1997, 28, 5-24.

19. Langer, R., Implantable Controlled Release Systems. Pharmacol. Therapeut. 1983, 21, 35-51.

79

20. (a) York, A. W.; Kirkland, S. E.; McCormick, C. L., Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery. Adv. Drug Deliver. Rev. 2008, 60, 1018-1036; (b) Dhal, P. K.; Polomoscanik, S. C.; Avila, L. Z.; Holmes-Farley, S. R.; Miller, R. J., Functional polymers as therapeutic agents: Concept to market place. Adv. Drug Deliver. Rev. 2009, 61, 1121-1130; (c) Bae, Y.; Kataoka, K., Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv. Drug Deliver. Rev 2009, 61, 768-784.

21. Sugano, M.; Egilmez, N. K.; Yokota, S. J.; Chen, F. A.; Harding, J.; Huang, S. K.; Bankert, R.

B., Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res.

2000, 60, 6942-6949.

22. Farokhzad, O. C.; Cheng, J. J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.;

Langer, R., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl.

Acad. Sci. USA 2006, 103, 6315-6320.

23. Alexis, F.; Basto, P.; Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Zhang, L.; Pridgen, E.;

Wang, A. Z.; Marein, S. L.; Westerhof, K.; Molnar, L. K.; Farokhzad, O. C., HER-2-Targeted Nanoparticle-Affibody Bioconjugates for Cancer Therapy. ChemMedChem. 2008, 3, 1839-1843.

24. Pirollo, K. F.; Chang, E. H., Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends. Biotechnol. 2008, 26, 552-558.

25. (a) Leserman, L. D.; Barbet, J.; Kourilsky, F.; Weinstein, J. N., Targeting to Cells of Fluorescent Liposomes Covalently Coupled with Monoclonal Antibody or Protein-A. Nature 1980, 288, 602-604; (b) Heath, T. D.; Fraley, R. T.; Papahadjopoulos, D., Antibody Targeting of Liposomes - Cell Specificity Obtained by Conjugation of F(Ab')2 to Vesicle Surface. Science 1980, 210, 539-541;

(c) Warenius, H. M.; Galfre, G.; Bleehen, N. M.; Milstein, C., Attempted Targeting of a Monoclonal- Antibody in a Human-Tumor Xenograft System. Eur. J. Cancer. Clin. On. 1981, 17, 1009-1015.

26. Albanell, J.; Baselga, J., Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today 1999, 35, 931-946.

80

27. Allen, T. M., Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer. 2002, 2, 750-763.

28. Scheffler, I. E., A century of mitochondrial research: achievements and perspectives.

Mitochondrion 2001, 1, 3-31.

29. Green, D. R.; Reed, J. C., Mitochondria and apoptosis. Science 1998, 281, 1309-1312.

30. Wallace, D. C., A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359-407.

31. Weissig, V.; Torchilin, V. P., Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv. Drug Deliver. Rev. 2001, 49, 127-149.

32. Azzone, G. F.; Pietrobon, D.; Zoratti, M., Determination of the Proton Electrochemical Gradient across Biological-Membranes. Curr. Top Bioenerg. 1984, 13, 1-77.

33. Chen, L. B., Mitochondrial-Membrane Potential in Living Cells. Annu. Rev. Cell. Biol. 1988, 4, 155-181.

34. Rideout, D. C.; Calogeropoulou, T.; Jaworski, J. S.; Dagnino, R.; Mccarthy, M. R., Phosphonium Salts Exhibiting Selective Anti-Carcinoma Activity Invitro. Anti-Cancer Drug Des.

1989, 4, 265-280.

35. Hayward, R. C.; Pochan, D. J., Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process. Macromolecules 2010, 43, 3577-3584.

36. Zhang, L. F.; Eisenberg, A., Multiple Morphologies of Crew-Cut Aggregates of Polystyrene- B-Poly(Acrylic Acid) Block-Copolymers. Science 1995, 268, 1728-1731.

37. Yu, Y. S.; Zhang, L. F.; Eisenberg, A., Multiple morphologies of crew cut aggregates of polybutadiene-b-poly(acrylic acid) diblocks with low T-g cores. Langmuir 1997, 13, 2578-2581.

81

38. Aliabadi, H. M.; Brocks, D. R.; Mahdipoor, P.; Lavasanifar, A., A novel use of an in vitro method to predict the in vivo stability of block copolymer based nano-containers. J. Control. Release.

2007, 122, 63-70.

39. Jain, S.; Bates, F. S., Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions. Macromolecules 2004, 37, 1511-1523.

40. Nicolai, T.; Colombani, O.; Chassenieux, C., Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 2010, 6, 3111-3118.

41. Won, Y. Y.; Davis, H. T.; Bates, F. S., Molecular exchange in PEO-PB micelles in water.

Macromolecules 2003, 36, 953-955.

42. Dormidontova, E. E., Micellization kinetics in block copolymer solutions: Scaling model.

Macromolecules 1999, 32 , 7630-7644.

43. Chen, H. T.; Kim, S. W.; Li, L.; Wang, S. Y.; Park, K.; Cheng, J. X., Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc. Natl. Acad. Sci. USA 2008, 105, 6596-6601.

44. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release. 2000, 65, 271-284.

45. Cho, E. C.; Zhang, Q.; Xia, Y. N., The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 2011, 6, 385-391.

46. Haag, R., Supramolecular drug-delivery systems based on polymeric core-shell architectures.

Angew. Chem. Int. Edit. 2004, 43, 278-282.

47. Ryu, J. H.; Chacko, R. T.; Jiwpanich, S.; Bickerton, S.; Babu, R. P.; Thayumanavan, S., Self- Cross-Linked Polymer Nanogels: A Versatile Nanoscopic Drug Delivery Platform. J. Am. Chem. Soc.

2010, 132, 17227-17235.

48. Ryu, J. H.; Bickerton, S.; Zhuang, J. M.; Thayumanavan, S., Ligand-Decorated Nanogels:

Fast One-Pot Synthesis and Cellular Targeting. Biomacromolecules 2012, 13, 1515-1522.

82

49. Jiang, T.; Olson, E. S.; Nguyen, Q. T.; Roy, M.; Jennings, P. A.; Tsien, R. Y., Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 17867-17872.

50. Wong, C.; Stylianopoulos, T.; Cui, J. A.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popovic, Z.;

Jain, R. K.; Bawendi, M. G.; Fukumura, D., Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426-2431.

51. Lofblom, J.; Feldwisch, J.; Tolmachev, V.; Carlsson, J.; Stahl, S.; Frejd, F. Y., Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. Febs Lett 2010, 584, 2670-2680.

52. Uhlen, M.; Guss, B.; Nilsson, B.; Gatenbeck, S.; Philipson, L.; Lindberg, M., Complete Sequence of the Staphylococcal Gene Encoding Protein-a - a Gene Evolved through Multiple Duplications. J. Biol. Chem. 1984, 259, 1695-1702.

53. Myers, J. K.; Oas, T. G., Preorganized secondary structure as an important determinant of fast protein folding. Nat. Struct. Biol. 2001, 8, 552-558.

54. Nilsson, B.; Moks, T.; Jansson, B.; Abrahmsen, L.; Elmblad, A.; Holmgren, E.; Henrichson, C.; Jones, T. A.; Uhlen, M., A Synthetic Igg-Binding Domain Based on Staphylococcal Protein-A.

Protein Eng. 1987, 1, 107-113.

55. Nord, K.; Nilsson, J.; Nilsson, B.; Uhlen, M.; Nygren, P. A., A Combinatorial Library of an Alpha-Helical Bacterial Receptor Domain. Protein Eng. 1995, 8, 601-608.

56. Engfeldt, T.; Renberg, B.; Brumer, H.; Nygren, P. A.; Karlstrom, A. E., Chemical synthesis of triple-labelled three-helix bundle binding proteins for specific fluorescent detection of unlabelled protein. ChemBioChem 2005, 6, 1043-1050.

57. Sisson, A. L.; Steinhilber, D.; Rossow, T.; Welker, P.; Licha, K.; Haag, R., Biocompatible Functionalized Polyglycerol Microgels with Cell Penetrating Properties. Angew. Chem. Int. Edit. 2009, 48, 7540-7545.

Dokumen terkait