Chapter 1. Introduction
1.3. Nanocatalyst
1.3.4. Materials
and corresponding high wettability. To control the wettability, there are some factors as follows
◼ Concentration of solution
◼ A kind of solvent
◼ A kind of solute
◼ Atmospheric condition
◼ Processing temperature
1.3.3.3.2.
Pore structure of Backbone
Another significant factor to control morphology in the infiltration is the pore-morphology of scaffold. Küngas et al. [75] and Sarikaya et al. [76,77] studied the morphological effect of scaffold on the microstructure of electrode and the performances by using HF treatments and various pore former, respectively. As a result, for the HF treatment, they found significant increases in the surface areas, even after calcination of the treated scaffold. For the pore former effect, the uniformly distributed pores and percolation of the constituent phases minimize the slow anode activation process by using activated reactive sites, while large pores provide a major pathway for gas transport.
, where 𝑟𝐴, 𝑟𝐵 and 𝑟𝑂 are the ionic radius of A, B, and O ions, respectively.
Another perovskite derived by intensive distortion has close-packing type of AO3 layers with the B cations in octahedral holes: the hexagonal (AB) sequence with octahedral B cations sharing faces into infinite one-dimensional chains within the hh (=2H) hexagonal polytype, e.g. BaCoO3. In particular, the alkali earth manganates, such as SrMnO3 and BaMnO3, has so-called hexagonal perovskite layer due to the high oxidation number of Mn.[78–83]
Between these two extreme forms, the perovskite structure can possess mixed phases with various proportions of cubic and hexagonal layers, such as the material Pr0.5Ba0.5MnO3 and Pr0.5Ba0.5Mn0.85Co0.15O3).[78–83]
Figure 1-19 Crystal structure of simple perovskite (ABO3)
Layered Perovskite (AA’B2
O
5)
The layered perovskite structure is named because the unit cell of is twice that of perovskite. It has the same architecture of 12 coordinate A sites and 6 coordinate B site, while two cations are ordered on the B site. This family of compounds can be theoretically described with a stacking sequence of BaO-CoO2-LnOx-CoO2 long the c-axis as shown in Figure 1-20. All mobile oxygen is located only the Ln-O plane, providing oxygen transport channel.
Figure 1-20 Crystal structure of a layered perovskite
This layered structure reduces the oxygen bonding strength in the [AO] layer and provides a disorder-free channel for ion motion, which enhances oxygen diffusivity.[84] Layered perovskite oxides have received tremendous interest because of its high chemical diffusion and a high surface exchange coefficient.
Ruddlesden-popper (An+1
B
nO
3n+1)
This oxide has a K2NiF4-type structure formulated as A2BO4+, which can be described as ABO3
perovskite and AO rock-salt layers arranged along the c-axis with the enough space in the AO layer.
This structure allows for the accommodation of oxygen over stoichiometry as oxygen interstitial species with negative charge, which are balanced through the oxidation of the B-site cations.[85–89]
These materials show good property in terms of electronic conductivity, oxygen ionic transport property, electrocatalysis for oxygen reduction reaction, and moderate thermal expansion.
Figure 1-21 Crystal structure of a Ruddlesden-Popper
Spinel (AB2
O
4)
Figure 1-22 Crystal structure of a Spinel
The spinel structure has the formula AB2O4. It is essentially cubic, and the O ion forms an fcc lattice.
Cations (usually metals) occupy 1/8 of the tetrahedral position and 1/2 of the octahedral site, and there are 32 O-ions in the unit cell. The spinel structure is very flexible for the cations that can be incorporated and can mix A and B cations. Basically, the spinel structure is composed of divalent and trivalent cations, and the spinel structure of tetrahedral interstices and octahedral interstices,
respectively. It is also interesting because they can each contain voids as a regular part of the crystal.[90–92]
References
[1] R. Chaubey, S. Sahu, O. O. James, S. Maity, Renewable and Sustainable Energy Reviews 2013, 23, 443.
[2] J. Brouwer, Current Applied Physics 2010, 10, S9.
[3] J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T.-H. H. Lim, G. Kim, Nano Energy 2017, 44, 121.
[4] S. Kim, C. Kim, J. H. J. H. Lee, J. Shin, T.-H. T.-H. Lim, G. Kim, Electrochimica Acta 2017, 225, 399.
[5] C. Yang, J. Li, Y. Lin, J. Liu, F. Chen, M. Liu, Nano Energy 2015, 11, 704.
[6] X. M. Ge, S. H. Chan, Q. L. Liu, Q. Sun, Advanced Energy Materials 2012, 2, 1156.
[7] S. Information, S. Sengodan, S. Choi, A. Jun, T. H. Shin, Y.-W. Ju, H. Y. Jeong, J. Shin, J. T.
S. Irvine, G. Kim, Nature Materials 2014, 14, 205.
[8] S. Yoo, J. Y. Shin, G. Kim, Journal of The Electrochemical Society 2011, 158, B632.
[9] G. Kim, S. Lee, J. Y. Shin, G. Corre, J. T. S. Irvine, J. M. Vohs, R. J. Gorte, Electrochemical and Solid-State Letters 2009, 12, B48.
[10] A. Magrasó, M. L. Fontaine, Y. Larring, R. Bredesen, G. E. Syvertsen, H. L. Lein, T. Grande, M. Huse, R. Strandbakke, R. Haugsrud, T. Norby, Fuel Cells 2011, 11, 17.
[11] J. M. Ralph, C. Rossignol, R. Kumar, Journal of the Electrochemical Society 2003, 150, A1518.
[12] E. O. Oh, C. M. Whang, Y. R. Lee, S. Y. Park, D. H. Prasad, K. J. Yoon, J. W. Son, J. H. Lee, H. W. Lee, Advanced Materials 2012, 24, 3373.
[13] J. M. Vohs, R. J. Gorte, Advanced Materials 2009, 21, 943.
[14] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in Materials Science 2015, 72, 141.
[15] J. Kim, W. Seo, J. Shin, M. Liu, G. Kim, J Mater Chem A 2013, 1, 515.
[16] T. Shimura, Z. Jiao, S. Hara, N. Shikazono, Journal of Power Sources 2014, 267, 58.
[17] Z. P. Li, T. Mori, G. J. Aucheterlonie, J. Zou, J. Drennan, M. Miyayama, Solid State Ionics 2011, 191, 55.
[18] T. Kim, G. Liu, M. Boaro, S. I. Lee, J. M. Vohs, R. J. Gorte, O. H. Al-Madhi, B. O. Dabbousi, Journal of Power Sources 2006, 155, 231.
[19] S. Thesis, V. Besikiotis, Economic Affairs 2008.
[20] E. D. Wachsman, K. T. Lee, Science 2011, 334, 935.
[21] Z. Sun, E. Fabbri, L. Bi, E. Traversa, Phys Chem Chem Phys 2011, 13, 7692.
[22] J. Kim, A. Jun, J. Shin, G. Kim, Journal of the American Ceramic Society 2014, 97, 651.
[23] S. Park, S. Choi, J. Shin, G. Kim, RSC Adv 2014, 4, 1775.
[24] A. Sarikaya, V. Petrovsky, F. Dogan, International Journal of Hydrogen Energy 2013, 38, 10081.
[25] R. Bove, S. Ubertini, Modeling Solid State Fuel Cells: Chapter 2. Thermodynamics of Fuel Cell, Springer, 2008.
[26] C. M. A. Brett, A. M. O. Brett, Electrochemistry: Principles, Methods, and Appplications, Oxford University Press Inc., New York, 1993.
[27] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, 2000.
[28] W. G. C. Ryan O’hayre, Suk-Won Cha, Wiley 2016, 603.
[29] N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, 1995.
[30] J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, New York, 2000.
[31] O. Yamamoto, Electrochimica Acta 2000, 45, 2423.
[32] I. Pilatowsky, R. J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian, W. Rivera, Thermodynamics of Fuel Cells, Springer, 2011.
[33] Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat Commun 2013, 4, 1805.
[34] W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston, K. J. Stevenson, Journal of Physical Chemistry Letters 2013, 4, 1254.
[35] F. Cheng, J. Chen, Chemical Society Reviews 2012, 41, 2172.
[36] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Journal of Physical Chemistry Letters 2010, 1, 2193.
[37] J. T. Mefford, W. G. Hardin, S. Dai, K. P. Johnston, K. J. Stevenson, Nature Materials 2014, 13, 726.
[38] Z. F. Huang, J. Wang, Y. Peng, C. Y. Jung, A. Fisher, X. Wang, Advanced Energy Materials 2017, 1700544, 1.
[39] G. Li, X. Wang, J. Fu, J. Li, M. G. Park, Y. Zhang, G. Lui, Z. Chen, Angewandte Chemie International Edition 2016, 55, 4977.
[40] S. Kim, O. Kwon, C. Kim, O. Gwon, H. young Jeong, K.-H. Kim, J. Shin, G. Kim, Advanced Materials Interfaces 2018, 5, 1800123.
[41] S. Kim, J. Kim, G. Kim, D. Ph, n.d.
[42] Y. Kim, J. K. Kim, C. Vaalma, G. H. Bae, G. T. Kim, S. Passerini, Y. Kim, Carbon 2018, 129, 564.
[43] J. Han, S. M. Hwang, W. Go, S. T. Senthilkumar, D. Jeon, Y. Kim, Journal of Power Sources 2018, 374, 24.
[44] Y. Kim, S. M. Hwang, H. Yu, Y. Kim, Journal of Materials Chemistry A 2018, DOI 10.1039/C7TA10668H.
[45] J. Jung, D. Kim, H. Kim, Y. N. Jo, J. S. Park, Y. Kim, 2016, DOI 10.1021/acsami.6b09316.
[46] J. K. Kim, E. Lee, H. Kim, C. Johnson, J. Cho, Y. Kim, ChemElectroChem 2015, 2, 328.
[47] S. T. Senthilkumar, S. O. Park, J. Kim, S. M. Hwang, S. K. Kwak, Y. Kim, J Mater Chem A 2017, 5, 14174.
[48] K. Lee, L. Zhang, H. Lui, R. Hui, Z. Shi, J. Zhang, Electrochimica Acta 2009, 54, 4704.
[49] R. Kiyani, S. Rowshanzamir, M. J. Parnian, Energy 2016, 113, 1162.
[50] W. WU, X. QIN, J. GUO, J. WANG, H. YANG, L. WANG, Journal of Rare Earths 2017, 35, 887.
[51] L. T. Soo, K. S. Loh, A. B. Mohamad, W. R. W. Daud, W. Y. Wong, Journal of Power Sources 2016, 324, 412.
[52] T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Scientific reports 2015, 5, 13801.
[53] M. Stern, A. L. Geary, Journal of The Electrochemical Society 1957, 104, 559.
[54] S. J. Kim, J. Mahmood, C. Kim, G. F. Han, S. W. Kim, S. M. Jung, G. Zhu, J. J. De Yoreo, G.
Kim, J. B. Baek, Journal of the American Chemical Society 2018, 140, 1737.
[55] L. Bi, S. Boulfrad, E. Traversa, Chemical Society Reviews 2014, 43, 8255.
[56] X. Yue, J. T. S. Irvine, J Mater Chem A 2017, 5, 7081.
[57] Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem Soc Rev 2017, 46, 1427.
[58] M. Torrell, S. Garc� a-Rodr� guez, A. Morata, G. Penelas, A. Taranc� n, Faraday Discussions 2015, 182, 241.
[59] M. a. Laguna-Bercero, Journal of Power Sources 2012, 203, 4.
[60] A. Jun, Y.-W. Ju, G. Kim, Faraday Discuss 2015, 00, 1.
[61] A. Tremel, Electrolysis — Fundamental Technologies , Requirements and Current Status, Springer, 2018.
[62] G. Tsekouras, D. Neagu, J. T. S. Irvine, Energy & Environmental Science 2013, 6, 256.
[63] Z. Jiang, C. Xia, F. Chen, Electrochimica Acta 2010, 55, 3595.
[64] K. D. Yang, C. W. Lee, J. H. Jang, T. R. Ha, K. T. Nam, Nanotechnology 2017, 28, DOI 10.1088/1361-6528/aa7b0b.
[65] D. Neagu, G. Tsekouras, D. N. Miller, H. Ménard, J. T. S. Irvine, Nature chemistry 2013, 5, 916.
[66] S. P. Jiang, International Journal of Hydrogen Energy 2012, 37, 449.
[67] S. Kim, A. Jun, O. Kwon, J. Kim, S. Yoo, H. Y. Jeong, J. Shin, G. Kim, ChemSusChem 2015, 8, 3153.
[68] B. M. H. K. Navaz, 2010, 953.
[69] S. Kim, S. Choi, a. Jun, J. Shin, G. Kim, Journal of the Electrochemical Society 2014, 161, F1468.
[70] S. Lee, G. Kim, J. M. Vohs, R. J. Gorte, 2008, 1179.
[71] D. Ding, X. Li, S. Y. Lai, K. Gerdes, M. Liu, Energy & Environmental Science 2014, 7, 552.
[72] Y. Choi, S. Choi, H. Y. Jeong, M. Liu, B.-S. Kim, G. Kim, ACS applied materials & interfaces 2014, 6, 17352.
[73] X. Lou, Z. Liu, S. Wang, Y. Xiu, C. P. Wong, M. Liu, 2010, 195, 419.
[74] A. Tsoga, A. Naoumidis, P. Nikolopoulos, Acta Materialia 1996, 44, 3679.
[75] R. Küngas, J. S. Kim, J. M. Vohs, R. J. Gorte, Journal of the American Ceramic Society 2011, 94, 2220.
[76] A. Sarikaya, F. Dogan, Ceramics International 2013, 39, 403.
[77] A. Sarikaya, V. Petrovsky, F. Dogan, International Journal of Hydrogen Energy 2012, 37, 11370.
[78] M. Iorgulescu, P. Roussel, N. Tancret, N. Renaut, N. Tiercelin, O. Mentre, Journal of Solid State Chemistry 2013, 198, 210.
[79] L. Miranda, J. Ramírez-Castellanos, A. Varela, J. González-Calbet, M. Parras, M. Hernando, M. T. Fernández-Díaz, M. G. Hernández, Chemistry of Materials 2007, 19, 1503.
[80] L. Miranda, A. Feteira, D. C. Sinclair, M. G. Hernández, K. Boulahya, M. Hernando, A.
Varela, J. M. González-Calbet, M. Parras, Chemistry of Materials 2008, 20, 2818.
[81] D. R. Modeshia, R. I. Walton, Chemical Society Reviews 2010, 39, 4303.
[82] O. Kwon, S. Sengodan, K. Kim, G. G. Kim, H. Y. Jeong, J. Shin, Y.-W. W. Ju, J. W. Han, G.
G. Kim, Nature Communications 2017, 8, 1.
[83] Y.-Q. Zhang, Y.-F. Sun, J.-L. Luo, ECS Transactions 2016, 75, 955.
[84] S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H. Y. Jeong, Y. Choi, G. Kim, M. Liu, Scientific reports 2013, 3, 2426.
[85] P. Battle, M. Green, J. Lago, Chemistry of … 1998, 10, 658.
[86] G. Amow, S. J. Skinner, Journal of Solid State Electrochemistry 2006, 10, 538.
[87] G. Amow, I. J. Davidson, S. J. Skinner, Solid State Ionics 2006, 177, 1205.
[88] S. Kim, S. Choi, A. Jun, J. Shin, G. Kim, Journal of the Electrochemical Society 2014, 161, F1468.
[89] S. Choi, S. Yoo, J.-Y. Shin, G. Kim, Journal of The Electrochemical Society 2011, 158, B995.
[90] F. Zasada, J. Gryboś, P. Indyka, W. Piskorz, J. Kaczmarczyk, Z. Sojka, The Journal of Physical Chemistry C 2014, 118, 19085.
[91] S. Kawano, N. Yamamoto, N. Achiwa, Japanese Journal of Applied Physics 1974, 13, 1891.
[92] B. Lefez, P. Nkeng, J. Lopitaux, G. Poillerat, Materials Research Bulletin 1996, 31, 1263.
[93] B. Obama, science 2017, 355, 126.
[94] Y.-W. W. Ju, S. Yoo, C. Kim, S. Kim, I.-Y. Y. Jeon, J. Shin, J.-B. B. Baek, G. Kim, Advanced Science 2015, 3, 1500205.
[95] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.