• Tidak ada hasil yang ditemukan

New perspective. ................................................................... Error! Bookmark not defined

Chapter 5. General conclusion and future perspective ....................... Error! Bookmark not defined

5.2 New perspective. ................................................................... Error! Bookmark not defined

In the previous session we have described Dx fidget-spinner device for bacteria isolation from 60

urine samples. Although the technology is simple and easy-to-use, there are few short comings that 61

needs to be addressed in the future work. Firstly, in clinical studies that were presented, we tested only 62

40 patients who were affected by E. coli; however, we can’t conclude that other bacteria species with 63

lower doubling time could be detected in similar manner for which DNA or mRNA targeted detection 64

methods need to be adapted. Secondly, the detection can be coupled with colorimetric detection 65

approach that can be easily interpreted using naked eye or mobile phone with minimal instrumentation 66

will be a good way forward. These two approaches which is promising because it brings specificity to 67

diagnosis while keeping the technology relatively simple.

68

The ongoing project targets fluids with extremely low pathogen content for example fluids 69

such as exhale breath concentrate (EBC), nasal swab etc. can be considered. Airborn pathogens are 70

increasing alarmingly and in many parts of the world its considered an alarming threat. With increase 71

in global warming and fine dust the possibility of air born infections are expected to increase 40 fold 72

by 2025.104 Diagnostics of pulmonary infections or air sampling is currently a complex process and 73

needs new approach. Figure 5.1 shows a schematic of our ongoing projectSimple flow through array 74

membrane for cell isolation and digital detection.

75 76

86 77

Figure 5.1. Scheme of the Simple flow through array membrane integrated Dx-FS and concept 78

of RPA based detection.

79 80 81 82

DFP Bonding

87

Figure 5.2. Rapid Hirachial memrbane fabrication method. (A) The figure shows the simple four step 83

approach that allways compatmentialstaion af any porous material under 10 minutes. (B) Image of 200 84

m well fabricated using our method, the scaning electron microscopic image of the same and isolation 85

of bacteria in the wellsimaged using fluorecent microscope. (D) Is the image of the Dx-FS integrateded 86

with newly fabricaed hyrachial memerbane. Top ad side view of the well attached to a nano porous 87

bottom.

88

To realize the above, our ongoing efforts are directed toward implement RPA bacteria from low 89

volume of sample containing 1 to 103 CFU/mL concentration. Combining a sensitive technique like 90

RPA, there is a clear incentive for simple robust tool. The key solution in the work is a Hierarchical 91

membrane can be applied in this device to make compartmentalization of bacteria trapped in well, 92

making single-pathogen detection possible. This opens the hole new horizons of low bacteria count 93

detection for food and environmental samples like drinking and ground waters, milk, tea, coffee, and 94

others.In our point of view, Dx fidget spinner has not only great potential for point-of-care for UTI 95

detection, but also for other biological, food, and environmental samples upon further research. Also, 96

hierarchical membrane and DNA amplification-based methods (RPA or LAMP) can be added to 97

increase method sensitivity and specificity respectively can be added. Further research can help to 98

extend application of this tool to address targeted problems.

99 D

88

References

100

1. Byass, P. Global health estimated over two decades. Nature 545, 421–422 (2017).

101

2. Urdea, M. et al. Requirements for high impact diagnostics in the developing world. Nature 444 102

Suppl, 73–79 (2006).

103

3. Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A. & Luong, J. H. T. Emerging Technologies for 104

Next-Generation Point-of-Care Testing. Trends in Biotechnology 33, 692–705 (2015).

105

4. IHME, I. for health metrics and evaluation. Findings from the Global Burden of Disease Study 106

2017. Lancet (2018).

107

5. Maternal, N. & C. S. C. to 2015. Fulfilling the Health Agenda for Women and Children. Reprod.

108

Health (2014). doi:http://www.countdown2015mnch.org/reports-and-articles/2014-report 109

Retrieved on 01st January 2015 110

6. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children 111

and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 112

2013. Lancet (2014). doi:10.1016/S0140-6736(14)60460-8 113

7. Price, C. P. Point of care testing. BMJ 322, 1285–1288 (2001).

114

8. Michael, I., Kim, T.-H., Sunkara, V. & Cho, Y.-K. Challenges and Opportunities of Centrifugal 115

Microfluidics for Extreme Point-of-Care Testing. Micromachines 7, 32 (2016).

116

9. Vashist, S. K. Point-of-care diagnostics: Recent advances and trends. Biosensors (2017).

117

doi:10.3390/bios7040062 118

10. Su, W., Gao, X., Jiang, L. & Qin, J. Microfluidic platform towards point-of-care diagnostics in 119

infectious diseases. Journal of Chromatography A (2015). doi:10.1016/j.chroma.2014.12.041 120

11. Drain, P. K. et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis.

121

14, 239–249 (2014).

122

12. Wood, C. S. et al. Taking connected mobile-health diagnostics of infectious diseases to the field.

123

Nature 566, 467–474 (2019).

124

13. Girosi, F. et al. Developing and interpreting models to improve diagnostics in developing 125

countries. Nature (2006). doi:10.1038/nature05441 126

14. Chokshi, M. et al. Health systems in India. Journal of Perinatology (2016).

127

doi:10.1038/jp.2016.184 128

15. World Health Organization. WHO Model List of Essential Medicines - 19th List (April 2015).

129

Essent. Med. (2015). doi:10.1016/S1473-3099(14)70780-7 130

16. Dupas, P. Health Behavior in Developing Countries. Annu. Rev. Econom. (2011).

131

doi:10.1146/annurev-economics-111809-125029 132

17. Peters, D. H. et al. Poverty and access to health care in developing countries. Annals of the New 133

York Academy of Sciences (2008). doi:10.1196/annals.1425.011 134

18. Posthuma-Trumpie, G. A., Korf, J. & van Amerongen, A. Lateral flow (immuno)assay: its 135

89

strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393, 136

569–582 (2009).

137

19. Davenport, M. et al. New and developing diagnostic technologies for urinary tract infections.

138

Nature Reviews Urology 14, 298–310 (2017).

139

20. Kettler, H., White, K. & Hawkes, S. Mapping the landscape of diagnostics for sexually 140

transmitted infections. UNICEF/UNDP/World Bank/WHO (2004).

141

21. WHO Expert Committee on Biological Standardization. World Health Organization technical 142

report series (2016).

143

22. Ritchie, A. V. et al. SAMBA HIV semiquantitative test, a new point-of-care viral-load- 144

monitoring assay for resource-limited settings. J. Clin. Microbiol. (2014).

145

doi:10.1128/JCM.00593-14 146

23. Peeling, R., Smith, P. & Bossuyt, P. A guide for diagnostic evaluations (special issue: Evaluating 147

diagnostics: The STI guide). Nat Rev Microbiol (2006).

148

24. Kosack, C. S., Page, A. L. & Klatser, P. R. A guide to aid the selection of diagnostic tests. Bull.

149

World Health Organ. (2017). doi:10.2471/BLT.16.187468 150

25. Kettler, H., White, K. & Hawkes, S. Mapping the landscape of diagnostics for sexually 151

transmitted infections: Key findings and recommandations. Unicef/Undp/World Bank/Who 152

(2004).

153

26. Fransisca, L. et al. Comparison of rapid diagnostic test Plasmotec Malaria-3, microscopy, and 154

quantitative real-time PCR for diagnoses of Plasmodium falciparum and Plasmodium vivax 155

infections in Mimika Regency, Papua, Indonesia. Malar. J. (2015). doi:10.1186/s12936-015- 156

0615-5 157

27. Bassett, I. V. et al. Who starts antiretroviral therapy in Durban, South Africa?. not everyone who 158

should. AIDS (2010). doi:10.1097/01.aids.0000366081.91192.1c 159

28. Drain, P. K. et al. Diagnostic point-of-care tests in resource-limited settings. The Lancet 160

Infectious Diseases (2014). doi:10.1016/S1473-3099(13)70250-0 161

29. Mabey, D., Peeling, R. W., Ustianowski, A. & Perkins, M. D. Tropical infectious diseases:

162

Diagnostics for the developing world. Nat. Rev. Microbiol. (2004). doi:10.1038/nrmicro841 163

30. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in 164

biomedical research. Nature 507, 181–9 (2014).

165

31. Mark, D., Haeberle, S., Roth, G., von Stetten, F. & Zengerle, R. Microfluidic lab-on-a-chip 166

platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153–1182 (2010).

167

32. Janasek, D., Franzke, J. & Manz, A. Scaling and the design of miniaturized chemical-analysis 168

systems. Nature (2006). doi:10.1038/nature05059 169

33. Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature (2006).

170

doi:10.1038/nature05064 171

34. Martinez, A. W., Phillips, S. T., Butte, M. J. & Whitesides, G. M. Patterned paper as a platform 172

for inexpensive, low-volume, portable bioassays. Angew. Chemie - Int. Ed. 46, 1318–1320 173

90 (2007).

174

35. Pollock, N. R. et al. A paper-based multiplexed transaminase test for low-cost, point-of-care 175

liver function testing. Sci. Transl. Med. (2012). doi:10.1126/scitranslmed.3003981 176

36. Strohmeier, O. et al. Centrifugal microfluidic platforms: advanced unit operations and 177

applications. Chem. Soc. Rev. (2015). doi:10.1039/c4cs00371c 178

37. Madou, M. et al. LAB ON A CD. Annu. Rev. Biomed. Eng. (2006).

179

doi:10.1146/annurev.bioeng.8.061505.095758 180

38. Gorkin, R. et al. Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758 181

(2010).

182

39. Duffy, D. C., Gillis, H. L., Lin, J., Sheppard, N. F. & Kellogg, G. J. Microfabricated centrifugal 183

microfluidic systems: Characterization and multiple enzymatic assays. Anal. Chem. (1999).

184

doi:10.1021/ac990682c 185

40. Banerjee, I. & Russom, A. Lab-on-DVD: Optical disk drive-based platforms for point-of-care 186

diagnostics. in Frugal Innovation in Bioengineering for the Detection of Infectious Diseases 187

(2018). doi:10.1007/978-3-319-66647-1_2 188

41. St John, A. & Price, C. P. Existing and Emerging Technologies for Point-of-Care Testing. Clin.

189

Biochem. Rev. (2014).

190

42. Antunes, P. et al. Quantification of NS1 dengue biomarker in serum via optomagnetic 191

nanocluster detection. Sci. Rep. (2015). doi:10.1038/srep16145 192

43. Thompson, B. L. et al. Inexpensive, rapid prototyping of microfluidic devices using overhead 193

transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. (2015).

194

doi:10.1038/nprot.2015.051 195

44. Lee, B. S. et al. Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and 196

immunoassay from whole blood. Lab Chip 11, 70–78 (2011).

197

45. Park, J., Sunkara, V., Kim, T. H., Hwang, H. & Cho, Y. K. Lab-on-a-disc for fully integrated 198

multiplex immunoassays. Anal. Chem. (2012). doi:10.1021/ac203163u 199

46. Kim, T. H., Park, J., Kim, C. J. & Cho, Y. K. Fully integrated lab-on-a-disc for nucleic acid 200

analysis of food-borne pathogens. Anal. Chem. (2014). doi:10.1021/ac403971h 201

47. Schuler, F. et al. Digital droplet PCR on disk. Lab Chip (2016). doi:10.1039/c5lc01068c 202

48. Focke, M., Stumpf, F., Roth, G., Zengerle, R. & Von Stetten, F. Centrifugal microfluidic system 203

for primary amplification and secondary real-time PCR. Lab Chip (2010).

204

doi:10.1039/c0lc00161a 205

49. Park, J. M., Cho, Y. K., Lee, B. S., Lee, J. G. & Ko, C. Multifunctional microvalves control by 206

optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab 207

Chip (2007). doi:10.1039/b616112j 208

50. Kim, T. H. et al. A lab-on-a-disc with reversible and thermally stable diaphragm valves. Lab 209

Chip (2016). doi:10.1039/c6lc00629a 210

91

51. Wu, G. & Zaman, M. H. Low-cost tools for diagnosing and monitoring HIV infection in low- 211

resource settings. Bull. World Health Organ. (2012). doi:10.2471/blt.12.102780 212

52. Chin, C. D., Linder, V. & Sia, S. K. Lab-on-a-chip devices for global health: Past studies and 213

future opportunities. Lab on a Chip (2007). doi:10.1039/b611455e 214

53. Peeling, R. Bringing diagnostics to developing countries: An interview with Rosanna Peeling.

215

Expert Review of Molecular Diagnostics (2015). doi:10.1586/14737159.2015.1081802 216

54. Derda, R. et al. Enabling the Development and Deployment of Next Generation Point-of-Care 217

Diagnostics. PLoS Negl. Trop. Dis. (2015). doi:10.1371/journal.pntd.0003676 218

55. Wong, A. P., Gupta, M., Shevkoplyas, S. S. & Whitesides, G. M. Egg beater as centrifuge:

219

Isolating human blood plasma from whole blood in resource-poor settings. Lab Chip 8, 2032–

220

2037 (2008).

221

56. Liu, C. H. et al. Blood Plasma Separation Using a Fidget-Spinner. Anal. Chem. (2019).

222

doi:10.1021/acs.analchem.8b04860 223

57. Bhamla, M. S. et al. Hand-powered ultralow-cost paper centrifuge. Nat. Biomed. Eng. 1, 0009 224

(2017).

225

58. Brown, J. et al. A hand-powered, portable, low-cost centrifuge for diagnosing anemia in low- 226

resource settings. Am. J. Trop. Med. Hyg. 85, 327–332 (2011).

227

59. Byagathvalli, G., Pomerantz, A., Sinha, S., Standeven, J. & Bhamla, M. S. A 3D-printed hand- 228

powered centrifuge for molecular biology. PLoS Biol. (2019). doi:10.1371/journal.pbio.3000251 229

60. SK, A., T, N., N, R. & K, N. Laboratory diagnosis of urinary tract infections using diagnostics 230

tests in adult patients. Int. J. Res. Med. Sci. (2014). doi:10.5455/2320-6012.ijrms20140508 231

61. Wilson, M. L. & Gaido, L. Laboratory diagnosis of urinary tract infections in adult patients. Clin.

232

Infect. Dis. 38, 1150–8 (2004).

233

62. World Health Organization. Urinary Tract Infections in Infants and Children in Developing 234

Countries in the Context of IMCI. Discuss. Pap. child Heal. 1–24 (2005).

235

63. Gilbert, N. M. et al. Urinary Tract Infection as a Preventable Cause of Pregnancy Complications:

236

Opportunities, Challenges, and a Global Call to Action. Glob. Adv. Heal. Med. 2, 59–69 (2013).

237

64. Schmiemann, G., Kniehl, E., Gebhardt, K., Matejczyk, M. M. & Hummers-Pradier, E. The 238

Diagnosis of Urinary Tract Infection. Dtsch. Aerzteblatt Online 107, 361–368 (2010).

239

65. Pollock, N. R. et al. A paper-based multiplexed transaminase test for low-cost, point-of-care 240

liver function testing. Sci. Transl. Med. 4, 152ra129-152ra129 (2012).

241

66. Ng, A. H. C. et al. A digital microfluidic system for serological immunoassays in remote settings.

242

Sci. Transl. Med. 10, 1–13 (2018).

243

67. Watkins, N. N. et al. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care 244

HIV diagnostics using whole blood. Sci. Transl. Med. 5, (2013).

245

68. deMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 442, 246

394–402 (2006).

247

92

69. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

248

70. Mauk, M. G. Calling in the test: Smartphone-based urinary sepsis diagnostics. EBioMedicine 37, 249

11–12 (2018).

250

71. Barnes, L. et al. Smartphone-based pathogen diagnosis in urinary sepsis patients. EBioMedicine 251

(2018). doi:10.1016/j.ebiom.2018.09.001 252

72. Laksanasopin, T. et al. Supplementary Information: A smartphone dongle for diagnosis of 253

infectious diseases at the point of care. Sci. Transl. Med. 7, 273re1 (2015).

254

73. Sarah T. Thomas, Carl Heneghan, Christopher P. Price, Ann Van den Bruel, A. P. Point-of-Care 255

Testing for Urinary Tract Infections Horizon Scan Report 0045. (2016).

256

74. Hooton, T. M. Uncomplicated urinary tract infection. New England Journal of Medicine (2012).

257

doi:10.1056/NEJMcp1104429 258

75. Wilson, M. L. & Gaido, L. Laboratory Diagnosis of Urinary Tract Infections in Adult Patients.

259

Clin. Infect. Dis. (2004). doi:10.1086/383029 260

76. Foxman, B. The epidemiology of urinary tract infection. Nat Rev Urol 7, 653–660 (2010).

261

77. Lee, A. et al. All-in-One Centrifugal Micro fl uidic Device for Size-Selective Circulating Tumor 262

Cell Isolation with High Purity. (2014).

263

78. Zhang, L. et al. Hand-powered Centrifugal Microfluidic Platforms Inspired by a Spinning Top 264

for Sample-to-Answer Diagnostics of Nucleic Acids. Lab Chip (2018).

265

doi:10.1039/C7LC01234A 266

79. Schecter, R. A., Shah, J., Fruitman, K. & Milanaik, R. L. Fidget spinners. Curr. Opin. Pediatr.

267

29, 616–618 (2017).

268

80. Mesquita, L. et al. Using a fidget spinner to teach physics. Phys. Educ. 53, 045024 (2018).

269

81. MacLean, K. E. Haptic Interaction Design for Everyday Interfaces. Rev. Hum. Factors Ergon.

270

(2008). doi:10.1518/155723408x342826 271

82. Kim, T.-H. et al. FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole 272

Blood at a Liquid-Liquid Interface. Anal. Chem. 89, 1155–1162 (2017).

273

83. Vanrijn, C. J. M. & Elwenspoek, M. C. Micro filtration membrane sieve with silicon micro 274

machining for industrial and biomedical applications. Micro Electro Mech. Syst. - Ieee 275

Proceedings, 1995 83–87 (1995). doi:Doi 10.1109/Memsys.1995.472549 276

84. Hasegawa, H. et al. Distinct function of Pseudomonas aeruginosa type IV pili disclosed in the 277

bacterial pass-through of membrane filter with smaller pore sizes. Microbiol. Immunol. (2007).

278

doi:10.1111/j.1348-0421.2007.tb03930.x 279

85. Hasegawa, H., Naganuma, K., Nakagawa, Y. & Matsuyama, T. Membrane filter (pore size, 0.22- 280

0.45 μm; Thickness, 150 μm) passing-through activity of Pseudomonas aeruginosa and other 281

bacterial species with indigenous infiltration ability. FEMS Microbiol. Lett. (2003).

282

doi:10.1016/S0378-1097(03)00327-6 283

86. Lee, B. S. et al. Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and 284

93

immunoassay from whole blood. Lab Chip 11, 70–78 (2011).

285

87. Yaguchi, T. et al. Aqueous two-phase system-derived biofilms for bacterial interaction studies.

286

Biomacromolecules 13, 2655–61 (2012).

287

88. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile 288

and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol.

289

42, 819–32 (2000).

290

89. Thakre, S. S. et al. Can the Griess Nitrite Test and a Urinary Pus Cell Count of ≥5 Cells Per 291

Micro Litre of Urine in Pregnant Women be Used for the Screening or the Early Detection of 292

Urinary Tract Infections in Rural India? J. Clin. Diagn. Res. 6, 1518–22 (2012).

293

90. Tsukatani, T. et al. Comparison of the WST-8 colorimetric method and the CLSI broth 294

microdilution method for susceptibility testing against drug-resistant bacteria. J. Microbiol.

295

Methods (2012). doi:10.1016/j.mimet.2012.05.001 296

91. International Organization for Standardization. Photography -- Electronic still picture imaging - 297

- Resolution and spatial frequency responses. in 3, 49 (2017).

298

92. ICC. Specification ICC.1 : 2004-10. Image (Rochester, N.Y.) (2006).

299

doi:10.1126/science.188.4183.8 300

93. Buser, J. R. et al. Precision chemical heating for diagnostic devices. Lab Chip (2015).

301

doi:10.1039/c5lc01053e 302

94. You, Y., Lim, S., Hahn, J., Choi, Y. J. & Gunasekaran, S. Bifunctional linker-based 303

immunosensing for rapid and visible detection of bacteria in real matrices. Biosens. Bioelectron.

304

100, 389–395 (2018).

305

95. Mishra, B., Srivastava, S., Singh, K., Pandey, A. & Agarwal, J. Symptom-based diagnosis of 306

urinary tract infection in women: Are we over-prescribing antibiotics? Int. J. Clin. Pract. (2012).

307

doi:10.1111/j.1742-1241.2012.02906.x 308

96. Aguiar, J. P. Evaluation of Empirical Antibiotic Therapy for the Treatment of Community- 309

Acquired Urinary Tract Infections (CA-UTI). Int. Arch. Clin. Pharmacol. 1, 1–6 (2017).

310

97. George, C., Norman, G., Ramana, Gv., Mukherjee, D. & Rao, T. Treatment of uncomplicated 311

symptomatic urinary tract infections: Resistance patterns and misuse of antibiotics. J. Fam. Med.

312

Prim. Care (2015). doi:10.4103/2249-4863.161342 313

98. Howitt, P. et al. Technologies for global health. The Lancet (2012). doi:10.1016/S0140- 314

6736(12)61127-1 315

99. Indian council of medical research. GUIDELINES FOR GOOD CLINICAL LABORATORY 316

PRACTICES (GCLP). Indian council of medical research (2008).

317

100. European Confederation of Laboratory Medicine. European urinalysis guidelines. Scand. J. Clin.

318

Lab. Invest. Suppl. 231, 1–86 (2000).

319

101. Spaulding, C. N., Klein, R. D., Schreiber, H. L., Janetka, J. W. & Hultgren, S. J. Precision 320

antimicrobial therapeutics: The path of least resistance? npj Biofilms Microbiomes (2018).

321

doi:10.1038/s41522-018-0048-3 322

94

102. National Centre For Disease Control. National Treatment Guidelines for Antimicrobial Use in 323

Infectious Diseases, India. 0, 1–64 (2008).

324

103. (CLSI), C. and L. S. institute. M100 Performance Standards for Antimicrobial Susceptibility 325

Testing 28th ed. 2018. Journal of Services Marketing (2018). doi:10.1108/08876049410065598 326

104. Haig, C. W., Mackay, W. G., Walker, J. T. & Williams, C. Bioaerosol sampling: Sampling 327

mechanisms, bioefficiency and field studies. Journal of Hospital Infection (2016).

328

doi:10.1016/j.jhin.2016.03.017 329

105. Lopez, A. D. & Murray, C. C. J. L. The global burden of disease, 1990–2020. Nat. Med. 4, 1241–

330

1243 (1998).

331

106. Murray, C. J. L. & Lopez, A. D. Mortality by cause for eight regions of the world: Global Burden 332

of Disease Study. Lancet (1997). doi:10.1016/S0140-6736(96)07493-4 333

107. World Health Organization. Health Financing Strategy for the Asia Pacific Region Health 334

Financing Strategy For tHe Asia Pacific region (2010-2015). World Health Organization (2010).

335

108. Watarai, H. Continuous Separation Principles Using External Microaction Forces. Annu. Rev.

336

Anal. Chem. (2013). doi:10.1146/annurev-anchem-062012-092551 337

338 339

95

Acknowledgements

340

I would like to begin by thanking the people of Korea for making my time during my PhD 341

memorable by always greeting me with a smile and a warm heart. The work that I have accomplished 342

during my PhD is a result of the freedom and the constant encouragement provided to me by my advisor, 343

Prof. Yoon-Kyoung Cho. She has groomed me to think better scientifically in global standards. The 344

culture that she has imparted in Fruits Lab has helped me evolve into a better person with explicit 345

scientific curiosity and compassionate leadership.

346

My heartfelt thanks to my research coaches Dr. Dongyoung kim & Dr. Sumit kumar who have 347

stood as constant pillars of support and encouragement during my times of failure. Also Dr. Olgierd 348

cybulski and Dr. Jung Min Oh who have imparted knowledge that transformed me. I specially would 349

like to thank my friend Jun young Kim who was a blessing in disguise for me. He has made my life in 350

Korea so seamless by complimenting my language and cultural ignorance with his kind help. A sincere 351

thanks to my buddies Dr. Jonathan, Chi-Ju Kim, Yang-Seok Park, and Dong Yeob Ki for enriching my 352

social life during my graduate school.

353

I appreciate the help of all present and past members of our lab in orienting me with every 354

process of reseach, Dr. Divakara, Dr. Vijaya Sunkara, Dr. Tae-Hyeong Kim, Yubin Kim, Hyun-Kyung 355

Woo, Sun-Min Yu, Minji Lim, Yongjun Choi, Chaeeun Lee, Mamata Karmacharya, Juhee Park, 356

YooHong-Min, InUn Kim and Donghoon Lee. A special thanks to Oleksandra Gulenko who has vested 357

her trust to work and learn along the research process.

358

I would also like to thank Jun young Kim’s parents who have given me a home away from 359

home. I would like to specially thank my mother Dr. Jyothi Clara who has constantly encouraged me 360

& inspired me to take a leap into this PhD and given me the freedom of time to invest in my research 361

work.

362

Final I would like to share my thanks to thank My loving wife who has whole heartedly 363

traveled with me during this four year and have made this journey joyful one.

364 365 366

96

Curriculum Vitae

367

Issac Michael

368 369

Education 370

2015.09 - 2020.02 Ph.D. in Biomedical Engineering, UNIST, Korea (3.9/4.3) 371

Thesis: “Centrifugal Microfluidics for Extreme Point of Care Testing of 372

Infectious Disease”

373

Advisor: Prof. Yoon-Kyoung Cho, IBS, CSLM, Korea 374

375

2013.07 - 2013.04 M.S Nanotechnology, SRM Institute of Science and Technology, India (9.1/10) 376

Thesis: “Paper microfluidic device on the spot venom typing”

377

Advisor: Dr. Amit Asthana, CSIR CCMB, India.

378 379

2006.10-2010.05 B.E Biomedical Engineering, Anna University, India. (3.1/4) 380

Thesis: “Design and simulation implantable triaxle MEMS energy harvester”

381

Guide: Dr. Shivaraman Ramaswami, SRM University, India.

382 383

Work Experience 384

2014.08- 2015.08 Science communicator, Accendere KMS Pvt.Ltd., India.

385

2014.04-2014.08 Microfluidics Engineer, Robert Bosch Center for Cyber Physical Systems, India.

386

2013.02-2014.04 Junior Research Fellow, CSIR-Center for Cellular & Molecular Biology, India.

387

2010.01-2011.01 Biomedical Design Engineer, Apollo Group of Hospitals, India 388

Consulting Experience 389

2017.10- Present MicroX Labs Inc., Michigan, USA (New clinical application) 390

2018.12- Present Big Bang Boom Sol. Pvt. Ltd., India (Battlefield medicine) 391

Honours and Awards 392

2018. 11. 15 Gold Medal Winner, Shark Tank Competition, MicroTAS 2018, Taiwan 393

2018. 11. 13 First place of 2018 Korean Defense Science and Technology Fair 394

2017. 10. 26 Selected as an Oral Presentation, MicroTAS 2016, Ireland 395

2015 - 2020 Research Assistantship, UNIST, Korea 396

2013.02- 2014.06 Junior research fellow, CSIR, Center for Cellular and Molecular Biology, India.

397

2012.02.12 Gold Medal Winner, Oral presentation on research day, SRM university, India.

398 399 400 401

UNIST-gil 50, Ulsan 44919, Republic of Korea Mobile: +82-10-4417-4048 Email: [email protected]