Chapter 5. General conclusion and future perspective ....................... Error! Bookmark not defined
5.2 New perspective. ................................................................... Error! Bookmark not defined
In the previous session we have described Dx fidget-spinner device for bacteria isolation from 60
urine samples. Although the technology is simple and easy-to-use, there are few short comings that 61
needs to be addressed in the future work. Firstly, in clinical studies that were presented, we tested only 62
40 patients who were affected by E. coli; however, we can’t conclude that other bacteria species with 63
lower doubling time could be detected in similar manner for which DNA or mRNA targeted detection 64
methods need to be adapted. Secondly, the detection can be coupled with colorimetric detection 65
approach that can be easily interpreted using naked eye or mobile phone with minimal instrumentation 66
will be a good way forward. These two approaches which is promising because it brings specificity to 67
diagnosis while keeping the technology relatively simple.
68
The ongoing project targets fluids with extremely low pathogen content for example fluids 69
such as exhale breath concentrate (EBC), nasal swab etc. can be considered. Airborn pathogens are 70
increasing alarmingly and in many parts of the world its considered an alarming threat. With increase 71
in global warming and fine dust the possibility of air born infections are expected to increase 40 fold 72
by 2025.104 Diagnostics of pulmonary infections or air sampling is currently a complex process and 73
needs new approach. Figure 5.1 shows a schematic of our ongoing project “Simple flow through array 74
membrane for cell isolation and digital detection.
75 76
86 77
Figure 5.1. Scheme of the Simple flow through array membrane integrated Dx-FS and concept 78
of RPA based detection.
79 80 81 82
DFP Bonding
87
Figure 5.2. Rapid Hirachial memrbane fabrication method. (A) The figure shows the simple four step 83
approach that allways compatmentialstaion af any porous material under 10 minutes. (B) Image of 200 84
m well fabricated using our method, the scaning electron microscopic image of the same and isolation 85
of bacteria in the wellsimaged using fluorecent microscope. (D) Is the image of the Dx-FS integrateded 86
with newly fabricaed hyrachial memerbane. Top ad side view of the well attached to a nano porous 87
bottom.
88
To realize the above, our ongoing efforts are directed toward implement RPA bacteria from low 89
volume of sample containing 1 to 103 CFU/mL concentration. Combining a sensitive technique like 90
RPA, there is a clear incentive for simple robust tool. The key solution in the work is a Hierarchical 91
membrane can be applied in this device to make compartmentalization of bacteria trapped in well, 92
making single-pathogen detection possible. This opens the hole new horizons of low bacteria count 93
detection for food and environmental samples like drinking and ground waters, milk, tea, coffee, and 94
others.In our point of view, Dx fidget spinner has not only great potential for point-of-care for UTI 95
detection, but also for other biological, food, and environmental samples upon further research. Also, 96
hierarchical membrane and DNA amplification-based methods (RPA or LAMP) can be added to 97
increase method sensitivity and specificity respectively can be added. Further research can help to 98
extend application of this tool to address targeted problems.
99 D
88
References
100
1. Byass, P. Global health estimated over two decades. Nature 545, 421–422 (2017).
101
2. Urdea, M. et al. Requirements for high impact diagnostics in the developing world. Nature 444 102
Suppl, 73–79 (2006).
103
3. Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A. & Luong, J. H. T. Emerging Technologies for 104
Next-Generation Point-of-Care Testing. Trends in Biotechnology 33, 692–705 (2015).
105
4. IHME, I. for health metrics and evaluation. Findings from the Global Burden of Disease Study 106
2017. Lancet (2018).
107
5. Maternal, N. & C. S. C. to 2015. Fulfilling the Health Agenda for Women and Children. Reprod.
108
Health (2014). doi:http://www.countdown2015mnch.org/reports-and-articles/2014-report 109
Retrieved on 01st January 2015 110
6. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children 111
and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 112
2013. Lancet (2014). doi:10.1016/S0140-6736(14)60460-8 113
7. Price, C. P. Point of care testing. BMJ 322, 1285–1288 (2001).
114
8. Michael, I., Kim, T.-H., Sunkara, V. & Cho, Y.-K. Challenges and Opportunities of Centrifugal 115
Microfluidics for Extreme Point-of-Care Testing. Micromachines 7, 32 (2016).
116
9. Vashist, S. K. Point-of-care diagnostics: Recent advances and trends. Biosensors (2017).
117
doi:10.3390/bios7040062 118
10. Su, W., Gao, X., Jiang, L. & Qin, J. Microfluidic platform towards point-of-care diagnostics in 119
infectious diseases. Journal of Chromatography A (2015). doi:10.1016/j.chroma.2014.12.041 120
11. Drain, P. K. et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis.
121
14, 239–249 (2014).
122
12. Wood, C. S. et al. Taking connected mobile-health diagnostics of infectious diseases to the field.
123
Nature 566, 467–474 (2019).
124
13. Girosi, F. et al. Developing and interpreting models to improve diagnostics in developing 125
countries. Nature (2006). doi:10.1038/nature05441 126
14. Chokshi, M. et al. Health systems in India. Journal of Perinatology (2016).
127
doi:10.1038/jp.2016.184 128
15. World Health Organization. WHO Model List of Essential Medicines - 19th List (April 2015).
129
Essent. Med. (2015). doi:10.1016/S1473-3099(14)70780-7 130
16. Dupas, P. Health Behavior in Developing Countries. Annu. Rev. Econom. (2011).
131
doi:10.1146/annurev-economics-111809-125029 132
17. Peters, D. H. et al. Poverty and access to health care in developing countries. Annals of the New 133
York Academy of Sciences (2008). doi:10.1196/annals.1425.011 134
18. Posthuma-Trumpie, G. A., Korf, J. & van Amerongen, A. Lateral flow (immuno)assay: its 135
89
strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393, 136
569–582 (2009).
137
19. Davenport, M. et al. New and developing diagnostic technologies for urinary tract infections.
138
Nature Reviews Urology 14, 298–310 (2017).
139
20. Kettler, H., White, K. & Hawkes, S. Mapping the landscape of diagnostics for sexually 140
transmitted infections. UNICEF/UNDP/World Bank/WHO (2004).
141
21. WHO Expert Committee on Biological Standardization. World Health Organization technical 142
report series (2016).
143
22. Ritchie, A. V. et al. SAMBA HIV semiquantitative test, a new point-of-care viral-load- 144
monitoring assay for resource-limited settings. J. Clin. Microbiol. (2014).
145
doi:10.1128/JCM.00593-14 146
23. Peeling, R., Smith, P. & Bossuyt, P. A guide for diagnostic evaluations (special issue: Evaluating 147
diagnostics: The STI guide). Nat Rev Microbiol (2006).
148
24. Kosack, C. S., Page, A. L. & Klatser, P. R. A guide to aid the selection of diagnostic tests. Bull.
149
World Health Organ. (2017). doi:10.2471/BLT.16.187468 150
25. Kettler, H., White, K. & Hawkes, S. Mapping the landscape of diagnostics for sexually 151
transmitted infections: Key findings and recommandations. Unicef/Undp/World Bank/Who 152
(2004).
153
26. Fransisca, L. et al. Comparison of rapid diagnostic test Plasmotec Malaria-3, microscopy, and 154
quantitative real-time PCR for diagnoses of Plasmodium falciparum and Plasmodium vivax 155
infections in Mimika Regency, Papua, Indonesia. Malar. J. (2015). doi:10.1186/s12936-015- 156
0615-5 157
27. Bassett, I. V. et al. Who starts antiretroviral therapy in Durban, South Africa?. not everyone who 158
should. AIDS (2010). doi:10.1097/01.aids.0000366081.91192.1c 159
28. Drain, P. K. et al. Diagnostic point-of-care tests in resource-limited settings. The Lancet 160
Infectious Diseases (2014). doi:10.1016/S1473-3099(13)70250-0 161
29. Mabey, D., Peeling, R. W., Ustianowski, A. & Perkins, M. D. Tropical infectious diseases:
162
Diagnostics for the developing world. Nat. Rev. Microbiol. (2004). doi:10.1038/nrmicro841 163
30. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in 164
biomedical research. Nature 507, 181–9 (2014).
165
31. Mark, D., Haeberle, S., Roth, G., von Stetten, F. & Zengerle, R. Microfluidic lab-on-a-chip 166
platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153–1182 (2010).
167
32. Janasek, D., Franzke, J. & Manz, A. Scaling and the design of miniaturized chemical-analysis 168
systems. Nature (2006). doi:10.1038/nature05059 169
33. Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature (2006).
170
doi:10.1038/nature05064 171
34. Martinez, A. W., Phillips, S. T., Butte, M. J. & Whitesides, G. M. Patterned paper as a platform 172
for inexpensive, low-volume, portable bioassays. Angew. Chemie - Int. Ed. 46, 1318–1320 173
90 (2007).
174
35. Pollock, N. R. et al. A paper-based multiplexed transaminase test for low-cost, point-of-care 175
liver function testing. Sci. Transl. Med. (2012). doi:10.1126/scitranslmed.3003981 176
36. Strohmeier, O. et al. Centrifugal microfluidic platforms: advanced unit operations and 177
applications. Chem. Soc. Rev. (2015). doi:10.1039/c4cs00371c 178
37. Madou, M. et al. LAB ON A CD. Annu. Rev. Biomed. Eng. (2006).
179
doi:10.1146/annurev.bioeng.8.061505.095758 180
38. Gorkin, R. et al. Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758 181
(2010).
182
39. Duffy, D. C., Gillis, H. L., Lin, J., Sheppard, N. F. & Kellogg, G. J. Microfabricated centrifugal 183
microfluidic systems: Characterization and multiple enzymatic assays. Anal. Chem. (1999).
184
doi:10.1021/ac990682c 185
40. Banerjee, I. & Russom, A. Lab-on-DVD: Optical disk drive-based platforms for point-of-care 186
diagnostics. in Frugal Innovation in Bioengineering for the Detection of Infectious Diseases 187
(2018). doi:10.1007/978-3-319-66647-1_2 188
41. St John, A. & Price, C. P. Existing and Emerging Technologies for Point-of-Care Testing. Clin.
189
Biochem. Rev. (2014).
190
42. Antunes, P. et al. Quantification of NS1 dengue biomarker in serum via optomagnetic 191
nanocluster detection. Sci. Rep. (2015). doi:10.1038/srep16145 192
43. Thompson, B. L. et al. Inexpensive, rapid prototyping of microfluidic devices using overhead 193
transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. (2015).
194
doi:10.1038/nprot.2015.051 195
44. Lee, B. S. et al. Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and 196
immunoassay from whole blood. Lab Chip 11, 70–78 (2011).
197
45. Park, J., Sunkara, V., Kim, T. H., Hwang, H. & Cho, Y. K. Lab-on-a-disc for fully integrated 198
multiplex immunoassays. Anal. Chem. (2012). doi:10.1021/ac203163u 199
46. Kim, T. H., Park, J., Kim, C. J. & Cho, Y. K. Fully integrated lab-on-a-disc for nucleic acid 200
analysis of food-borne pathogens. Anal. Chem. (2014). doi:10.1021/ac403971h 201
47. Schuler, F. et al. Digital droplet PCR on disk. Lab Chip (2016). doi:10.1039/c5lc01068c 202
48. Focke, M., Stumpf, F., Roth, G., Zengerle, R. & Von Stetten, F. Centrifugal microfluidic system 203
for primary amplification and secondary real-time PCR. Lab Chip (2010).
204
doi:10.1039/c0lc00161a 205
49. Park, J. M., Cho, Y. K., Lee, B. S., Lee, J. G. & Ko, C. Multifunctional microvalves control by 206
optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab 207
Chip (2007). doi:10.1039/b616112j 208
50. Kim, T. H. et al. A lab-on-a-disc with reversible and thermally stable diaphragm valves. Lab 209
Chip (2016). doi:10.1039/c6lc00629a 210
91
51. Wu, G. & Zaman, M. H. Low-cost tools for diagnosing and monitoring HIV infection in low- 211
resource settings. Bull. World Health Organ. (2012). doi:10.2471/blt.12.102780 212
52. Chin, C. D., Linder, V. & Sia, S. K. Lab-on-a-chip devices for global health: Past studies and 213
future opportunities. Lab on a Chip (2007). doi:10.1039/b611455e 214
53. Peeling, R. Bringing diagnostics to developing countries: An interview with Rosanna Peeling.
215
Expert Review of Molecular Diagnostics (2015). doi:10.1586/14737159.2015.1081802 216
54. Derda, R. et al. Enabling the Development and Deployment of Next Generation Point-of-Care 217
Diagnostics. PLoS Negl. Trop. Dis. (2015). doi:10.1371/journal.pntd.0003676 218
55. Wong, A. P., Gupta, M., Shevkoplyas, S. S. & Whitesides, G. M. Egg beater as centrifuge:
219
Isolating human blood plasma from whole blood in resource-poor settings. Lab Chip 8, 2032–
220
2037 (2008).
221
56. Liu, C. H. et al. Blood Plasma Separation Using a Fidget-Spinner. Anal. Chem. (2019).
222
doi:10.1021/acs.analchem.8b04860 223
57. Bhamla, M. S. et al. Hand-powered ultralow-cost paper centrifuge. Nat. Biomed. Eng. 1, 0009 224
(2017).
225
58. Brown, J. et al. A hand-powered, portable, low-cost centrifuge for diagnosing anemia in low- 226
resource settings. Am. J. Trop. Med. Hyg. 85, 327–332 (2011).
227
59. Byagathvalli, G., Pomerantz, A., Sinha, S., Standeven, J. & Bhamla, M. S. A 3D-printed hand- 228
powered centrifuge for molecular biology. PLoS Biol. (2019). doi:10.1371/journal.pbio.3000251 229
60. SK, A., T, N., N, R. & K, N. Laboratory diagnosis of urinary tract infections using diagnostics 230
tests in adult patients. Int. J. Res. Med. Sci. (2014). doi:10.5455/2320-6012.ijrms20140508 231
61. Wilson, M. L. & Gaido, L. Laboratory diagnosis of urinary tract infections in adult patients. Clin.
232
Infect. Dis. 38, 1150–8 (2004).
233
62. World Health Organization. Urinary Tract Infections in Infants and Children in Developing 234
Countries in the Context of IMCI. Discuss. Pap. child Heal. 1–24 (2005).
235
63. Gilbert, N. M. et al. Urinary Tract Infection as a Preventable Cause of Pregnancy Complications:
236
Opportunities, Challenges, and a Global Call to Action. Glob. Adv. Heal. Med. 2, 59–69 (2013).
237
64. Schmiemann, G., Kniehl, E., Gebhardt, K., Matejczyk, M. M. & Hummers-Pradier, E. The 238
Diagnosis of Urinary Tract Infection. Dtsch. Aerzteblatt Online 107, 361–368 (2010).
239
65. Pollock, N. R. et al. A paper-based multiplexed transaminase test for low-cost, point-of-care 240
liver function testing. Sci. Transl. Med. 4, 152ra129-152ra129 (2012).
241
66. Ng, A. H. C. et al. A digital microfluidic system for serological immunoassays in remote settings.
242
Sci. Transl. Med. 10, 1–13 (2018).
243
67. Watkins, N. N. et al. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care 244
HIV diagnostics using whole blood. Sci. Transl. Med. 5, (2013).
245
68. deMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 442, 246
394–402 (2006).
247
92
69. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).
248
70. Mauk, M. G. Calling in the test: Smartphone-based urinary sepsis diagnostics. EBioMedicine 37, 249
11–12 (2018).
250
71. Barnes, L. et al. Smartphone-based pathogen diagnosis in urinary sepsis patients. EBioMedicine 251
(2018). doi:10.1016/j.ebiom.2018.09.001 252
72. Laksanasopin, T. et al. Supplementary Information: A smartphone dongle for diagnosis of 253
infectious diseases at the point of care. Sci. Transl. Med. 7, 273re1 (2015).
254
73. Sarah T. Thomas, Carl Heneghan, Christopher P. Price, Ann Van den Bruel, A. P. Point-of-Care 255
Testing for Urinary Tract Infections Horizon Scan Report 0045. (2016).
256
74. Hooton, T. M. Uncomplicated urinary tract infection. New England Journal of Medicine (2012).
257
doi:10.1056/NEJMcp1104429 258
75. Wilson, M. L. & Gaido, L. Laboratory Diagnosis of Urinary Tract Infections in Adult Patients.
259
Clin. Infect. Dis. (2004). doi:10.1086/383029 260
76. Foxman, B. The epidemiology of urinary tract infection. Nat Rev Urol 7, 653–660 (2010).
261
77. Lee, A. et al. All-in-One Centrifugal Micro fl uidic Device for Size-Selective Circulating Tumor 262
Cell Isolation with High Purity. (2014).
263
78. Zhang, L. et al. Hand-powered Centrifugal Microfluidic Platforms Inspired by a Spinning Top 264
for Sample-to-Answer Diagnostics of Nucleic Acids. Lab Chip (2018).
265
doi:10.1039/C7LC01234A 266
79. Schecter, R. A., Shah, J., Fruitman, K. & Milanaik, R. L. Fidget spinners. Curr. Opin. Pediatr.
267
29, 616–618 (2017).
268
80. Mesquita, L. et al. Using a fidget spinner to teach physics. Phys. Educ. 53, 045024 (2018).
269
81. MacLean, K. E. Haptic Interaction Design for Everyday Interfaces. Rev. Hum. Factors Ergon.
270
(2008). doi:10.1518/155723408x342826 271
82. Kim, T.-H. et al. FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole 272
Blood at a Liquid-Liquid Interface. Anal. Chem. 89, 1155–1162 (2017).
273
83. Vanrijn, C. J. M. & Elwenspoek, M. C. Micro filtration membrane sieve with silicon micro 274
machining for industrial and biomedical applications. Micro Electro Mech. Syst. - Ieee 275
Proceedings, 1995 83–87 (1995). doi:Doi 10.1109/Memsys.1995.472549 276
84. Hasegawa, H. et al. Distinct function of Pseudomonas aeruginosa type IV pili disclosed in the 277
bacterial pass-through of membrane filter with smaller pore sizes. Microbiol. Immunol. (2007).
278
doi:10.1111/j.1348-0421.2007.tb03930.x 279
85. Hasegawa, H., Naganuma, K., Nakagawa, Y. & Matsuyama, T. Membrane filter (pore size, 0.22- 280
0.45 μm; Thickness, 150 μm) passing-through activity of Pseudomonas aeruginosa and other 281
bacterial species with indigenous infiltration ability. FEMS Microbiol. Lett. (2003).
282
doi:10.1016/S0378-1097(03)00327-6 283
86. Lee, B. S. et al. Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and 284
93
immunoassay from whole blood. Lab Chip 11, 70–78 (2011).
285
87. Yaguchi, T. et al. Aqueous two-phase system-derived biofilms for bacterial interaction studies.
286
Biomacromolecules 13, 2655–61 (2012).
287
88. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile 288
and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol.
289
42, 819–32 (2000).
290
89. Thakre, S. S. et al. Can the Griess Nitrite Test and a Urinary Pus Cell Count of ≥5 Cells Per 291
Micro Litre of Urine in Pregnant Women be Used for the Screening or the Early Detection of 292
Urinary Tract Infections in Rural India? J. Clin. Diagn. Res. 6, 1518–22 (2012).
293
90. Tsukatani, T. et al. Comparison of the WST-8 colorimetric method and the CLSI broth 294
microdilution method for susceptibility testing against drug-resistant bacteria. J. Microbiol.
295
Methods (2012). doi:10.1016/j.mimet.2012.05.001 296
91. International Organization for Standardization. Photography -- Electronic still picture imaging - 297
- Resolution and spatial frequency responses. in 3, 49 (2017).
298
92. ICC. Specification ICC.1 : 2004-10. Image (Rochester, N.Y.) (2006).
299
doi:10.1126/science.188.4183.8 300
93. Buser, J. R. et al. Precision chemical heating for diagnostic devices. Lab Chip (2015).
301
doi:10.1039/c5lc01053e 302
94. You, Y., Lim, S., Hahn, J., Choi, Y. J. & Gunasekaran, S. Bifunctional linker-based 303
immunosensing for rapid and visible detection of bacteria in real matrices. Biosens. Bioelectron.
304
100, 389–395 (2018).
305
95. Mishra, B., Srivastava, S., Singh, K., Pandey, A. & Agarwal, J. Symptom-based diagnosis of 306
urinary tract infection in women: Are we over-prescribing antibiotics? Int. J. Clin. Pract. (2012).
307
doi:10.1111/j.1742-1241.2012.02906.x 308
96. Aguiar, J. P. Evaluation of Empirical Antibiotic Therapy for the Treatment of Community- 309
Acquired Urinary Tract Infections (CA-UTI). Int. Arch. Clin. Pharmacol. 1, 1–6 (2017).
310
97. George, C., Norman, G., Ramana, Gv., Mukherjee, D. & Rao, T. Treatment of uncomplicated 311
symptomatic urinary tract infections: Resistance patterns and misuse of antibiotics. J. Fam. Med.
312
Prim. Care (2015). doi:10.4103/2249-4863.161342 313
98. Howitt, P. et al. Technologies for global health. The Lancet (2012). doi:10.1016/S0140- 314
6736(12)61127-1 315
99. Indian council of medical research. GUIDELINES FOR GOOD CLINICAL LABORATORY 316
PRACTICES (GCLP). Indian council of medical research (2008).
317
100. European Confederation of Laboratory Medicine. European urinalysis guidelines. Scand. J. Clin.
318
Lab. Invest. Suppl. 231, 1–86 (2000).
319
101. Spaulding, C. N., Klein, R. D., Schreiber, H. L., Janetka, J. W. & Hultgren, S. J. Precision 320
antimicrobial therapeutics: The path of least resistance? npj Biofilms Microbiomes (2018).
321
doi:10.1038/s41522-018-0048-3 322
94
102. National Centre For Disease Control. National Treatment Guidelines for Antimicrobial Use in 323
Infectious Diseases, India. 0, 1–64 (2008).
324
103. (CLSI), C. and L. S. institute. M100 Performance Standards for Antimicrobial Susceptibility 325
Testing 28th ed. 2018. Journal of Services Marketing (2018). doi:10.1108/08876049410065598 326
104. Haig, C. W., Mackay, W. G., Walker, J. T. & Williams, C. Bioaerosol sampling: Sampling 327
mechanisms, bioefficiency and field studies. Journal of Hospital Infection (2016).
328
doi:10.1016/j.jhin.2016.03.017 329
105. Lopez, A. D. & Murray, C. C. J. L. The global burden of disease, 1990–2020. Nat. Med. 4, 1241–
330
1243 (1998).
331
106. Murray, C. J. L. & Lopez, A. D. Mortality by cause for eight regions of the world: Global Burden 332
of Disease Study. Lancet (1997). doi:10.1016/S0140-6736(96)07493-4 333
107. World Health Organization. Health Financing Strategy for the Asia Pacific Region Health 334
Financing Strategy For tHe Asia Pacific region (2010-2015). World Health Organization (2010).
335
108. Watarai, H. Continuous Separation Principles Using External Microaction Forces. Annu. Rev.
336
Anal. Chem. (2013). doi:10.1146/annurev-anchem-062012-092551 337
338 339
95
Acknowledgements
340
I would like to begin by thanking the people of Korea for making my time during my PhD 341
memorable by always greeting me with a smile and a warm heart. The work that I have accomplished 342
during my PhD is a result of the freedom and the constant encouragement provided to me by my advisor, 343
Prof. Yoon-Kyoung Cho. She has groomed me to think better scientifically in global standards. The 344
culture that she has imparted in Fruits Lab has helped me evolve into a better person with explicit 345
scientific curiosity and compassionate leadership.
346
My heartfelt thanks to my research coaches Dr. Dongyoung kim & Dr. Sumit kumar who have 347
stood as constant pillars of support and encouragement during my times of failure. Also Dr. Olgierd 348
cybulski and Dr. Jung Min Oh who have imparted knowledge that transformed me. I specially would 349
like to thank my friend Jun young Kim who was a blessing in disguise for me. He has made my life in 350
Korea so seamless by complimenting my language and cultural ignorance with his kind help. A sincere 351
thanks to my buddies Dr. Jonathan, Chi-Ju Kim, Yang-Seok Park, and Dong Yeob Ki for enriching my 352
social life during my graduate school.
353
I appreciate the help of all present and past members of our lab in orienting me with every 354
process of reseach, Dr. Divakara, Dr. Vijaya Sunkara, Dr. Tae-Hyeong Kim, Yubin Kim, Hyun-Kyung 355
Woo, Sun-Min Yu, Minji Lim, Yongjun Choi, Chaeeun Lee, Mamata Karmacharya, Juhee Park, 356
YooHong-Min, InUn Kim and Donghoon Lee. A special thanks to Oleksandra Gulenko who has vested 357
her trust to work and learn along the research process.
358
I would also like to thank Jun young Kim’s parents who have given me a home away from 359
home. I would like to specially thank my mother Dr. Jyothi Clara who has constantly encouraged me 360
& inspired me to take a leap into this PhD and given me the freedom of time to invest in my research 361
work.
362
Final I would like to share my thanks to thank My loving wife who has whole heartedly 363
traveled with me during this four year and have made this journey joyful one.
364 365 366
96
Curriculum Vitae
367
Issac Michael
368 369
Education 370
2015.09 - 2020.02 Ph.D. in Biomedical Engineering, UNIST, Korea (3.9/4.3) 371
Thesis: “Centrifugal Microfluidics for Extreme Point of Care Testing of 372
Infectious Disease”
373
Advisor: Prof. Yoon-Kyoung Cho, IBS, CSLM, Korea 374
375
2013.07 - 2013.04 M.S Nanotechnology, SRM Institute of Science and Technology, India (9.1/10) 376
Thesis: “Paper microfluidic device on the spot venom typing”
377
Advisor: Dr. Amit Asthana, CSIR CCMB, India.
378 379
2006.10-2010.05 B.E Biomedical Engineering, Anna University, India. (3.1/4) 380
Thesis: “Design and simulation implantable triaxle MEMS energy harvester”
381
Guide: Dr. Shivaraman Ramaswami, SRM University, India.
382 383
Work Experience 384
2014.08- 2015.08 Science communicator, Accendere KMS Pvt.Ltd., India.
385
2014.04-2014.08 Microfluidics Engineer, Robert Bosch Center for Cyber Physical Systems, India.
386
2013.02-2014.04 Junior Research Fellow, CSIR-Center for Cellular & Molecular Biology, India.
387
2010.01-2011.01 Biomedical Design Engineer, Apollo Group of Hospitals, India 388
Consulting Experience 389
2017.10- Present MicroX Labs Inc., Michigan, USA (New clinical application) 390
2018.12- Present Big Bang Boom Sol. Pvt. Ltd., India (Battlefield medicine) 391
Honours and Awards 392
2018. 11. 15 Gold Medal Winner, Shark Tank Competition, MicroTAS 2018, Taiwan 393
2018. 11. 13 First place of 2018 Korean Defense Science and Technology Fair 394
2017. 10. 26 Selected as an Oral Presentation, MicroTAS 2016, Ireland 395
2015 - 2020 Research Assistantship, UNIST, Korea 396
2013.02- 2014.06 Junior research fellow, CSIR, Center for Cellular and Molecular Biology, India.
397
2012.02.12 Gold Medal Winner, Oral presentation on research day, SRM university, India.
398 399 400 401
UNIST-gil 50, Ulsan 44919, Republic of Korea Mobile: +82-10-4417-4048 Email: [email protected]