Ⅰ. INTRODUCTION
1.4 R EFERENCE
15
16
15. Deane, J. P.; Gallachoir, B. P. O.; McKeogh, E. J., Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sust Energ Rev 2010, 14 (4), 1293-1302.
16. D. Sutanto, K. W. E. C., Superconducting Magnetic Energy Storage Systems for Power System Applications. IEEE Trans. Appl. Supercond. 2009, 20, 377-380.
17. Sharma, P.; Bhatti, T. S., A review on electrochemical double-layer capacitors. Energy Conversion and Management 2010, 51 (12), 2901-2912.
18. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Mater Today 2015, 18 (5), 252-264.
19. Xu, J.; Thomas, H. R.; Francis, R. W.; Lum, K. R.; Wang, J.; Liang, B., A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources 2008, 177 (2), 512-527.
20. Sasaki, T.; Ukyo, Y.; Novak, P., Memory effect in a lithium-ion battery. Nature materials 2013, 12 (6), 569-75.
21. Antolini, E., LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 2004, 170 (3-4), 159- 171.
22. Junji Akimoto, Y. G., and Yoshinao Oosawa, Synthesis and Structure Refinement of LiCoO2 Single Crystals. JOURNAL OF SOLID STATE CHEMISTRY 1998, 298—302.
23. Tarascon, M. A. a. J.-M., Building better batteries. Nature 2008, 451, 652-657.
24. A. MANTHIRAM , J. B. G., LITHIUM INSERTION INTO Fe2(S0& FRAMEWORKS.
Journal of Power Sources 1989, 26, 403-408.
25. Rozier, P.; Tarascon, J. M., Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. Journal of The Electrochemical Society 2015, 162 (14), A2490-A2499.
26. Kim, S.; Cho, W.; Zhang, X.; Oshima, Y.; Choi, J. W., A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nature communications 2016, 7, 13598.
27. Sun, Y. K.; Chen, Z.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.;
Myung, S. T.; Amine, K., Nanostructured high-energy cathode materials for advanced lithium batteries. Nature materials 2012, 11 (11), 942-7.
28. Li, H.; Zhou, H., Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chemical communications 2012, 48 (9), 1201-17.
29. C. Menachem, Y. W., J. Flowers, E. Peled, S.G. Greenbaum, Characterization of lithiated natural graphite before and after mild oxidation. Journal of Power Sources 1998, 76, 180–
185.
30. Xiang, H. F.; Chen, C. H.; Zhang, J.; Amine, K., Temperature effect on the graphite
17
exfoliation in propylene carbonate based electrolytes. Journal of Power Sources 2010, 195 (2), 604-609.
31. P. Yu, J. A. R., R. E. White, B. N. Popov, Ni-Composite Microencapsulated Graphite as the Negative Electrode in Lithium-Ion Batteries. Journal of The Electrochemical Society 2000, 147 (6), 2081-2085.
32. Xu, K., Nonaqueous liquid electrolytes for Li-based rechargeable batteries. Chemical Review 2004, 104, 4303-4417.
33. Hu, J.; Li, H.; Huang, X., Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. Solid State Ionics 2007, 178 (3-4), 265-271.
34. YINGHU LIU, J. S. X., TAO ZHENG, J. R. DAHN, MECHANISM OF LITHIUM INSERTION IN HARD CARBONS PREPARED BY PYROLYSIS OF EPOXY RESINS.
Carbon 1996, 34 (2), 193-200.
35. Kitta, M.; Akita, T.; Tanaka, S.; Kohyama, M., Two-phase separation in a lithiated spinel Li4Ti5O12 crystal as confirmed by electron energy-loss spectroscopy. Journal of Power Sources 2014, 257, 120-125.
36. Lee, J.-I.; Ko, Y.; Shin, M.; Song, H.-K.; Choi, N.-S.; Kim, M. G.; Park, S., High- performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy Environ. Sci. 2015, 8 (7), 2075-2084.
37. McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y., 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Advanced materials 2013, 25 (36), 4966-85.
38. Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. Particle & Particle Systems Characterization 2014, 31 (3), 317-336.
39. Wang, X.; Tang, D. M.; Li, H.; Yi, W.; Zhai, T.; Bando, Y.; Golberg, D., Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. Chemical communications 2012, 48 (40), 4812-4.
40. Zhong, K.; Zhang, B.; Luo, S.; Wen, W.; Li, H.; Huang, X.; Chen, L., Investigation on porous MnO microsphere anode for lithium ion batteries. Journal of Power Sources 2011, 196 (16), 6802-6808.
41. Qingmei Su, D. X., Jun Zhang, Gaohui Du, Bingshe Xu, In Situ Transmission Electron Microscopy Observation of the Conversion Mechanism of Fe2O3/Graphene Anode during Lithiation-Delithiation Processes. ACS nano 2013, 7 (10), 9115–9121.
42. G.X. Wang, Y. C., K. Kontantinov, Matthew Lindsay, H.K. Liu, S.X. Dou, Investigation of
18
cobalt oxides as anode materials for Li-ion batteries. Journal of Power Sources 2002, 109, 142-147.
43. Ian A. Courtney, J. R. D., Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Uthium with Tin Oxide Composites. Journal of Electrochemical Society 1997, 144 (6), 2045-2052.
44. Zhang, L. Q.; Liu, X. H.; Perng, Y. C.; Cho, J.; Chang, J. P.; Mao, S. X.; Ye, Z. Z.; Huang, J. Y., Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO(2) nanowires. Micron 2012, 43 (11), 1127-33.
45. Martin Winter, J. O. B., Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochemica Acta 1999, 45, 31-50.
46. Xiao Hua Liu, L. Z., Shan Huang, Scott X. Mao, Ting Zhu, Jian Yu Huang, Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS nano 2012, 6 (2), 1522–1531.
47. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature materials 2010, 9 (4), 353-8.
48. Peng, B.; Cheng, F.; Tao, Z.; Chen, J., Lithium transport at silicon thin film: barrier for high- rate capability anode. The Journal of chemical physics 2010, 133 (3), 034701.
49. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High- performance lithium battery anodes using silicon nanowires. Nature nanotechnology 2008, 3 (1), 31-5.
50. Ryu, J.; Hong, D.; Choi, S.; Park, S., Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes. ACS nano 2016, 10 (2), 2843-51.
51. Kim, H.; Han, B.; Choo, J.; Cho, J., Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angewandte Chemie 2008, 47 (52), 10151-4.
52. Minseong Ko, S. C., Sookyung Jeong, Pilgun Oh, Jaephil Cho, Elastic a-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS nano 2014, 8 (8), 8591–8599.
53. ANTONINO SALVATORE ARICÒ, P. B., BRUNO SCROSATI, JEAN-MARIE TARASCON, WALTER VAN SCHALKWIJK, Nanostructured materials for advanced energy conversion and storage devices. Nature materials 2005, 5, 12.
54. Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes.
Energy Environ. Sci. 2011, 4 (1), 56-72.
55. Ryu, J.; Hong, D.; Lee, H.-W.; Park, S., Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Research 2017.
56. Hwang, G.; Park, H.; Bok, T.; Choi, S.; Lee, S.; Hwang, I.; Choi, N. S.; Seo, K.; Park, S., A
19
high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation. Chemical communications 2015, 51 (21), 4429-32.
57. Park, O.; Lee, J.-I.; Chun, M.-J.; Yeon, J.-T.; Yoo, S.; Choi, S.; Choi, N.-S.; Park, S., High- performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Advances 2013, 3 (8), 2538.
58. Choi, S.; Lee, J. C.; Park, O.; Chun, M.-J.; Choi, N.-S.; Park, S., Synthesis of micro- assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries.
Journal of Materials Chemistry A 2013, 1 (36), 10617.
59. Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N. S.; Park, S., Control of interfacial layers for high-performance porous Si lithium-ion battery anode. ACS applied materials & interfaces 2014, 6 (18), 16360-7.
60. Yoo, S.; Lee, J.-I.; Ko, S.; Park, S., Highly dispersive and electrically conductive silver- coated Si anodes synthesized via a simple chemical reduction process. Nano Energy 2013, 2 (6), 1271-1278.
61. Park, H.; Choi, S.; Lee, S.; Hwang, G.; Choi, N.-S.; Park, S., Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature. J. Mater. Chem.
A 2015, 3 (3), 1325-1332.
62. Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature communications 2013, 4, 1943.
63. Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y., Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy & Environmental Science 2012, 5 (7), 7927.
64. M. Rosa Palacin, Recent advances in rechargeable battery materials: a chemist’s perspective.
Chem. Soc. Rev. 2009, 38, 2565-2575.
20