• Tidak ada hasil yang ditemukan

Singleโ€molecule DNA curtain assay

Chapter 3 Highโ€throughput singleโ€molecule imaging system using nanofabricated trenches and

3.5 Experimental methods

3.5.3 Singleโ€molecule DNA curtain assay

132

133

For protein mapping, EcoRIE111Q was labeled with quantum dots (Qdots) to visualize its binding to ฮปโ€DNA in EcoRI buffer (40 mM Trisโ€HCl [8.0], 100 mM NaCl, and 2 mM MgCl2, 1.6% glucose, 0.1X gloxy, and 1 mM DTT).

134

References

Chapter 1 Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B.

1. Scharer, O. D., Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 2013, 5 (10), a012609.

2. Errol, C. F., Graham,C.W., Wolfram,S., Richard,D.W., Roger,A.S. and; Tom, E., Nucleotide Excision Repair in Eukaryotes: Cell

Biology and Genetics. ASM Press: Washington, DC, 2006; p 1118.

3. Marteijn, J. A.; Lans, H.; Vermeulen, W.; Hoeijmakers, J. H., Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014, 15 (7), 465-81.

4. Sugasawa, K.; Ng, J. M.; Masutani, C.; Iwai, S.; van der Spek, P. J.; Eker, A. P.; Hanaoka, F.; Bootsma, D.; Hoeijmakers, J. H., Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 1998, 2 (2), 223-32.

5. Volker, M.; Mone, M. J.; Karmakar, P.; van Hoffen, A.; Schul, W.; Vermeulen, W.;

Hoeijmakers, J. H.; van Driel, R.; van Zeeland, A. A.; Mullenders, L. H., Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 2001, 8 (1), 213-24.

6. Evans, E.; Moggs, J. G.; Hwang, J. R.; Egly, J. M.; Wood, R. D., Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 1997, 16 (21), 6559-73.

7. Riedl, T.; Hanaoka, F.; Egly, J. M., The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J 2003, 22 (19), 5293-303.

8. Staresincic, L.; Fagbemi, A. F.; Enzlin, J. H.; Gourdin, A. M.; Wijgers, N.; Dunand-Sauthier, I.; Giglia-Mari, G.; Clarkson, S. G.; Vermeulen, W.; Scharer, O. D., Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 2009, 28 (8), 1111-20.

9. Mu, H.; Geacintov, N. E.; Broyde, S.; Yeo, J. E.; Scharer, O. D., Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair (Amst) 2018, 71, 33-42.

10. Min, J. H.; Pavletich, N. P., Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 2007, 449 (7162), 570-5.

11. Chen, X.; Velmurugu, Y.; Zheng, G.; Park, B.; Shim, Y.; Kim, Y.; Liu, L.; Van Houten, B.;

He, C.; Ansari, A.; Min, J. H., Kinetic gating mechanism of DNA damage recognition by Rad4/XPC.

Nat Commun 2015, 6, 5849.

12. Paul, D.; Mu, H.; Zhao, H.; Ouerfelli, O.; Jeffrey, P. D.; Broyde, S.; Min, J. H., Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex. Nucleic Acids Res 2019, 47 (12), 6015-6028.

13. Kong, M.; Liu, L.; Chen, X.; Driscoll, K. I.; Mao, P.; Bohm, S.; Kad, N. M.; Watkins, S. C.;

Bernstein, K. A.; Wyrick, J. J.; Min, J. H.; Van Houten, B., Single-Molecule Imaging Reveals that

135

Rad4 Employs a Dynamic DNA Damage Recognition Process. Mol Cell 2016, 64 (2), 376-387.

14. Wang, F.; Redding, S.; Finkelstein, I. J.; Gorman, J.; Reichman, D. R.; Greene, E. C., The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three- dimensional diffusion. Nat Struct Mol Biol 2013, 20 (2), 174-81.

15. Forget, A. L.; Kowalczykowski, S. C., Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 2012, 482 (7385), 423-7.

16. Gorman, J.; Wang, F.; Redding, S.; Plys, A. J.; Fazio, T.; Wind, S.; Alani, E. E.; Greene, E.

C., Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc Natl Acad Sci U S A 2012, 109 (45), E3074-83.

17. Gorman, J.; Greene, E. C., Visualizing one-dimensional diffusion of proteins along DNA.

Nat Struct Mol Biol 2008, 15 (8), 768-74.

18. Bonnet, I.; Biebricher, A.; Porte, P. L.; Loverdo, C.; Benichou, O.; Voituriez, R.; Escude, C.;

Wende, W.; Pingoud, A.; Desbiolles, P., Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 2008, 36 (12), 4118-27.

19. Berg, O. G.; Winter, R. B.; von Hippel, P. H., Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 1981, 20 (24), 6929-48.

20. Winter, R. B.; Berg, O. G.; von Hippel, P. H., Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions. Biochemistry 1981, 20 (24), 6961-77.

21. Blainey, P. C.; van Oijen, A. M.; Banerjee, A.; Verdine, G. L.; Xie, X. S., A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc Natl Acad Sci U S A 2006, 103 (15), 5752-7.

22. Liu, J.; Hanne, J.; Britton, B. M.; Bennett, J.; Kim, D.; Lee, J. B.; Fishel, R., Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch repair. Nature 2016, 539 (7630), 583-587.

23. Brown, M. W.; Kim, Y.; Williams, G. M.; Huck, J. D.; Surtees, J. A.; Finkelstein, I. J., Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nat Commun 2016, 7, 10607.

24. Hedglin, M.; O'Brien, P. J., Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein. ACS Chem Biol 2010, 5 (4), 427-36.

25. Sugasawa, K.; Okamoto, T.; Shimizu, Y.; Masutani, C.; Iwai, S.; Hanaoka, F., A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 2001, 15 (5), 507-21.

26. Lee, J. Y.; Finkelstein, I. J.; Crozat, E.; Sherratt, D. J.; Greene, E. C., Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK. Proc Natl Acad Sci U S A 2012, 109 (17), 6531-6.

27. Bernardes de Jesus, B. M.; Bjoras, M.; Coin, F.; Egly, J. M., Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol Cell Biol 2008, 28 (23), 7225-35.

136

28. Visnapuu, M. L.; Greene, E. C., Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nat Struct Mol Biol 2009, 16 (10), 1056-62.

29. Pluciennik, A.; Modrich, P., Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc Natl Acad Sci U S A 2007, 104 (31), 12709-13.

30. Ambjornsson, T.; Banik, S. K.; Krichevsky, O.; Metzler, R., Breathing dynamics in heteropolymer DNA. Biophys J 2007, 92 (8), 2674-84.

31. Zeida, A.; Machado, M. R.; Dans, P. D.; Pantano, S., Breathing, bubbling, and bending:

DNA flexibility from multimicrosecond simulations. Phys Rev E Stat Nonlin Soft Matter Phys 2012, 86 (2 Pt 1), 021903.

32. Velmurugu, Y.; Chen, X.; Slogoff Sevilla, P.; Min, J. H.; Ansari, A., Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex. Proc Natl Acad Sci U S A 2016, 113 (16), E2296-305.

33. Altan-Bonnet, G.; Libchaber, A.; Krichevsky, O., Bubble dynamics in double-stranded DNA.

Phys Rev Lett 2003, 90 (13), 138101.

34. Tafvizi, A.; Huang, F.; Fersht, A. R.; Mirny, L. A.; van Oijen, A. M., A single-molecule characterization of p53 search on DNA. Proc Natl Acad Sci U S A 2011, 108 (2), 563-8.

35. Cuculis, L.; Abil, Z.; Zhao, H.; Schroeder, C. M., Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat Commun 2015, 6, 7277.

36. Araujo, S. J.; Nigg, E. A.; Wood, R. D., Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol 2001, 21 (7), 2281-91.

37. McAteer, K.; Jing, Y.; Kao, J.; Taylor, J. S.; Kennedy, M. A., Solution-state structure of a DNA dodecamer duplex containing a Cis-syn thymine cyclobutane dimer, the major UV photoproduct of DNA. J Mol Biol 1998, 282 (5), 1013-32.

38. Mu, H.; Zhang, Y.; Geacintov, N. E.; Broyde, S., Lesion Sensing during Initial Binding by Yeast XPC/Rad4: Toward Predicting Resistance to Nucleotide Excision Repair. Chem Res Toxicol 2018, 31 (11), 1260-1268.

39. Scrima, A.; Konickova, R.; Czyzewski, B. K.; Kawasaki, Y.; Jeffrey, P. D.; Groisman, R.;

Nakatani, Y.; Iwai, S.; Pavletich, N. P.; Thoma, N. H., Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 2008, 135 (7), 1213-23.

40. Sugasawa, K.; Okuda, Y.; Saijo, M.; Nishi, R.; Matsuda, N.; Chu, G.; Mori, T.; Iwai, S.;

Tanaka, K.; Tanaka, K.; Hanaoka, F., UV-induced ubiquitylation of XPC protein mediated by UV- DDB-ubiquitin ligase complex. Cell 2005, 121 (3), 387-400.

41. Matsumoto, S.; Cavadini, S.; Bunker, R. D.; Grand, R. S.; Potenza, A.; Rabl, J.; Yamamoto, J.; Schenk, A. D.; Schubeler, D.; Iwai, S.; Sugasawa, K.; Kurumizaka, H.; Thoma, N. H., DNA damage detection in nucleosomes involves DNA register shifting. Nature 2019, 571 (7763), 79-84.

42. Mahmud K. K. Shivji, J. G. M., Isao Kuraoka, and Richard D. Wood., Dual-incision assays for nucleotide excision repair using DNA with a lesion at a specific site. Methods in Molecular Biology 1999, 113, 313-392.

137

43. Kim, Y.; de la Torre, A.; Leal, A. A.; Finkelstein, I. J., Efficient modification of lambda-DNA substrates for single-molecule studies. Sci Rep 2017, 7 (1), 2071.

44. Finkelstein, I. J.; Visnapuu, M. L.; Greene, E. C., Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 2010, 468 (7326), 983-7.

45. Dunand-Sauthier, I.; Hohl, M.; Thorel, F.; Jaquier-Gubler, P.; Clarkson, S. G.; Scharer, O. D., The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 2005, 280 (8), 7030-7.

46. Aguilera, A.; Garcia-Muse, T., R loops: from transcription byproducts to threats to genome stability. Mol Cell 2012, 46 (2), 115-24.

Chapter 2 TonEBP recognizes R-loops and initiates m6A RNA methylation for R-loop resolution.

47. Allison, D. F.; Wang, G. G., R-loops: formation, function, and relevance to cell stress. Cell Stress 2019, 3 (2), 38-46.

48. Ginno, P. A.; Lott, P. L.; Christensen, H. C.; Korf, I.; Chedin, F., R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 2012, 45 (6), 814-25.

49. Skourti-Stathaki, K.; Proudfoot, N. J., A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 2014, 28 (13), 1384-96.

50. Sollier, J.; Cimprich, K. A., Breaking bad: R-loops and genome integrity. Trends Cell Biol 2015, 25 (9), 514-22.

51. Groh, M.; Gromak, N., Out of balance: R-loops in human disease. PLoS Genet 2014, 10 (9), e1004630.

52. Gorthi, A.; Romero, J. C.; Loranc, E.; Cao, L.; Lawrence, L. A.; Goodale, E.; Iniguez, A. B.;

Bernard, X.; Masamsetti, V. P.; Roston, S.; Lawlor, E. R.; Toretsky, J. A.; Stegmaier, K.; Lessnick, S.

L.; Chen, Y.; Bishop, A. J. R., EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 2018, 555 (7696), 387-391.

53. Cerritelli, S. M.; Crouch, R. J., Ribonuclease H: the enzymes in eukaryotes. FEBS J 2009, 276 (6), 1494-505.

54. Groh, M., Albulescu,L.O., Cristini,A. and Gromak,N., Senataxin: genome guardian at the interface of transcription and neurodegeneration. J. Mol. Biol 2017, 429, 3181-3195.

55. Chan, Y. A.; Aristizabal, M. J.; Lu, P. Y.; Luo, Z.; Hamza, A.; Kobor, M. S.; Stirling, P. C.;

Hieter, P., Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 2014, 10 (4), e1004288.

56. Wahba, L.; Amon, J. D.; Koshland, D.; Vuica-Ross, M., RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability.

Mol Cell 2011, 44 (6), 978-88.

57. Zhang, C.; Fu, J.; Zhou, Y., A Review in Research Progress Concerning m6A Methylation

138

and Immunoregulation. Front Immunol 2019, 10, 922.

58. Horiuchi, K.; Kawamura, T.; Iwanari, H.; Ohashi, R.; Naito, M.; Kodama, T.; Hamakubo, T., Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 2013, 288 (46), 33292-302.

59. Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.;

Dai, Q.; Chen, W.; He, C., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6- adenosine methylation. Nat Chem Biol 2014, 10 (2), 93-5.

60. Ping, X. L.; Sun, B. F.; Wang, L.; Xiao, W.; Yang, X.; Wang, W. J.; Adhikari, S.; Shi, Y.; Lv, Y.; Chen, Y. S.; Zhao, X.; Li, A.; Yang, Y.; Dahal, U.; Lou, X. M.; Liu, X.; Huang, J.; Yuan, W. P.;

Zhu, X. F.; Cheng, T.; Zhao, Y. L.; Wang, X.; Rendtlew Danielsen, J. M.; Liu, F.; Yang, Y. G., Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014, 24 (2), 177-89.

61. Xiang, Y.; Laurent, B.; Hsu, C. H.; Nachtergaele, S.; Lu, Z.; Sheng, W.; Xu, C.; Chen, H.;

Ouyang, J.; Wang, S.; Ling, D.; Hsu, P. H.; Zou, L.; Jambhekar, A.; He, C.; Shi, Y., RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature 2017, 543 (7646), 573-576.

62. Abakir, A.; Giles, T. C.; Cristini, A.; Foster, J. M.; Dai, N.; Starczak, M.; Rubio-Roldan, A.;

Li, M.; Eleftheriou, M.; Crutchley, J.; Flatt, L.; Young, L.; Gaffney, D. J.; Denning, C.; Dalhus, B.;

Emes, R. D.; Gackowski, D.; Correa, I. R., Jr.; Garcia-Perez, J. L.; Klungland, A.; Gromak, N.; Ruzov, A., N(6)-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet 2020, 52 (1), 48-55.

63. Zhang, C.; Chen, L.; Peng, D.; Jiang, A.; He, Y.; Zeng, Y.; Xie, C.; Zhou, H.; Luo, X.; Liu, H.; Chen, L.; Ren, J.; Wang, W.; Zhao, Y., METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Mol Cell 2020, 79 (3), 425-442 e7.

64. Choi, S. Y.; Lee-Kwon, W.; Kwon, H. M., The evolving role of TonEBP as an immunometabolic stress protein. Nat Rev Nephrol 2020, 16 (6), 352-364.

65. Miyakawa, H.; Woo, S. K.; Chen, C. P.; Dahl, S. C.; Handler, J. S.; Kwon, H. M., Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity. Am J Physiol 1998, 274 (4), F753-61.

66. Kang, H. J.; Park, H.; Yoo, E. J.; Lee, J. H.; Choi, S. Y.; Lee-Kwon, W.; Lee, K. Y.; Hur, J. H.;

Seo, J. K.; Ra, J. S.; Lee, E. A.; Myung, K.; Kwon, H. M., TonEBP Regulates PCNA Polyubiquitination in Response to DNA Damage through Interaction with SHPRH and USP1. iScience 2019, 19, 177- 190.

67. Stroud, J. C.; Lopez-Rodriguez, C.; Rao, A.; Chen, L., Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor. Nature Structural Biology 2002, 9 (2), 90-94.

68. Britton, S.; Dernoncourt, E.; Delteil, C.; Froment, C.; Schiltz, O.; Salles, B.; Frit, P.; Calsou, P., DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014, 42 (14), 9047-62.

139

69. Dinant, C.; de Jager, M.; Essers, J.; van Cappellen, W. A.; Kanaar, R.; Houtsmuller, A. B.;

Vermeulen, W., Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 2007, 120 (Pt 15), 2731-40.

70. Cheon, N. Y.; Kim, H. S.; Yeo, J. E.; Scharer, O. D.; Lee, J. Y., Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B. Nucleic Acids Res 2019, 47 (16), 8337-8347.

71. Bagchi, B.; Blainey, P. C.; Xie, X. S., Diffusion constant of a nonspecifically bound protein undergoing curvilinear motion along DNA. J Phys Chem B 2008, 112 (19), 6282-6284.

72. Hamperl, S.; Bocek, M. J.; Saldivar, J. C.; Swigut, T.; Cimprich, K. A., Transcription- Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 2017, 170 (4), 774-786 e19.

73. Lin, S.; Choe, J.; Du, P.; Triboulet, R.; Gregory, R. I., The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell 2016, 62 (3), 335-345.

74. Cristini, A.; Groh, M.; Kristiansen, M. S.; Gromak, N., RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage. Cell Rep 2018, 23 (6), 1891-1905.

75. Yan, Q.; Shields, E. J.; Bonasio, R.; Sarma, K., Mapping Native R-Loops Genome-wide Using a Targeted Nuclease Approach. Cell Rep 2019, 29 (5), 1369-1380 e5.

76. Meyer, K. D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C. E.; Jaffrey, S. R., Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012, 149 (7), 1635-46.

77. Zaccara, S.; Ries, R. J.; Jaffrey, S. R., Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019, 20 (10), 608-624.

78. Yue, Y.; Liu, J.; He, C., RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 2015, 29 (13), 1343-55.

79. Stroud, J. C.; Lopez-Rodriguez, C.; Rao, A.; Chen, L., Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor. Nat Struct Biol 2002, 9 (2), 90-4.

80. Lee, J. Y.; Finkelstein, I. J.; Arciszewska, L. K.; Sherratt, D. J.; Greene, E. C., Single-Molecule Imaging of FtsK Translocation Reveals Mechanistic Features of Protein-Protein Collisions on DNA.

Mol Cell 2014, 54 (5), 832-843.

81. Lee, J. Y.; Greene, E. C., Assembly of recombinant nucleosomes on nanofabricated DNA curtains for single-molecule imaging. Methods in molecular biology (Clifton, N.J.) 2011, 778, 243- 58.

82. Nguyen, H. D.; Yadav, T.; Giri, S.; Saez, B.; Graubert, T. A.; Zou, L., Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 2017, 65 (5), 832-847 e4.

83. Kim, S.; Kang, N.; Park, S. H.; Wells, J.; Hwang, T.; Ryu, E.; Kim, B. G.; Hwang, S.; Kim, S. J.; Kang, S.; Lee, S.; Stirling, P.; Myung, K.; Lee, K. Y., ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork. Nucleic Acids Res 2020,

140

48 (13), 7218-7238.

84. Lee, J. H.; Lee, H. H.; Ye, B. J.; Lee-Kwon, W.; Choi, S. Y.; Kwon, H. M., TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPARgamma2. Sci Rep 2015, 5, 10937.

85. Motegi, A.; Liaw, H. J.; Lee, K. Y.; Roest, H. P.; Maas, A.; Wu, X.; Moinova, H.;

Markowitz, S. D.; Ding, H.; Hoeijmakers, J. H.; Myung, K., Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks.

Proc Natl Acad Sci U S A 2008, 105 (34), 12411-6.

Chapter 3 Highโ€throughput singleโ€molecule imaging system using nanofabricated trenches and fluorescent DNAโ€binding Proteins.

86. Wang, L.; Li, P. C., Microfluidic DNA microarray analysis: a review. Anal Chim Acta 2011, 687 (1), 12-27.

87. Zhao, Y.; Chen, D.; Yue, H.; French, J. B.; Rufo, J.; Benkovic, S. J.; Huang, T. J., Lab-on-a- chip technologies for single-molecule studies. Lab Chip 2013, 13 (12), 2183-98.

88. Joo, C.; Balci, H.; Ishitsuka, Y.; Buranachai, C.; Ha, T., Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 2008, 77, 51-76.

89. Robison, A. D.; Finkelstein, I. J., Rapid prototyping of multichannel microfluidic devices for single-molecule DNA curtain imaging. Anal Chem 2014, 86 (9), 4157-63.

90. Gallardo, I. F.; Pasupathy, P.; Brown, M.; Manhart, C. M.; Neikirk, D. P.; Alani, E.;

Finkelstein, I. J., High-Throughput Universal DNA Curtain Arrays for Single-Molecule Fluorescence Imaging. Langmuir 2015, 31 (37), 10310-7.

91. Fazio, T.; Visnapuu, M. L.; Wind, S.; Greene, E. C., DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir 2008, 24 (18), 10524-31.

92. Graneli, A.; Yeykal, C. C.; Prasad, T. K.; Greene, E. C., Organized arrays of individual DNA molecules tethered to supported lipid bilayers. Langmuir 2006, 22 (1), 292-9.

93. Visnapuu, M. L.; Fazio, T.; Wind, S.; Greene, E. C., Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion. Langmuir 2008, 24 (19), 11293- 9.

94. Cremer, P. S., & Boxer, S. G., Formation and spreading of lipid bilayers on planar glass supports. Journal of Physical Chemistry B 1999, 103 (13), 2554โ€“2559.

95. Fazio, T. A.; Lee, J. Y.; Wind, S. J.; Greene, E. C., Assembly of DNA curtains using hydrogen silsesquioxane as a barrier to lipid diffusion. Anal Chem 2012, 84 (18), 7613-7.

96. Gorman, J.; Fazio, T.; Wang, F.; Wind, S.; Greene, E. C., Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging. Langmuir 2010, 26 (2), 1372-9.

97. Akerman, B.; Tuite, E., Single- and double-strand photocleavage of DNA by YO, YOYO and TOTO. Nucleic Acids Res 1996, 24 (6), 1080-90.

98. Lee, S.; Oh, Y.; Lee, J.; Choe, S.; Lim, S.; Lee, H. S.; Jo, K.; Schwartz, D. C., DNA binding

141

fluorescent proteins for the direct visualization of large DNA molecules. Nucleic Acids Res 2016, 44 (1), e6.

99. Lee, S., Wang, C., Song, J., Kim, D. G., Oh, Y., Ko, W., โ€ฆ Jo, K., Investigation of various fluorescent proteinโ€DNA binding peptides for effectively visualizing large DNA molecules. RSC Advances 2016, 6 (52), 46291-46298.

100. Park, J., Lee, S.,Won,N., Shin, E., Kim, S. H., Chun, M. Y., โ€ฆ Jo, K., Singleโ€molecule DNA visualization using ATโ€specific red and nonโ€specific green DNAโ€binding fluorescent proteins.

Analyst 2019, 144 (3), 921-927.

101. Shin, E., Kim, W., Lee, S., Bae, J., Kim, S., Ko, W., โ€ฆ Jo, K., Truncated TALEโ€FP as DNA staining dye in a highโ€salt buffer. Scientific Reports 2019, 9 (1), 17197 (1-13).

102. Bustamante, C.; Smith, S. B.; Liphardt, J.; Smith, D., Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 2000, 10 (3), 279-85.

103. Haupts, U.; Maiti, S.; Schwille, P.; Webb, W. W., Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 1998, 95 (23), 13573-8.

104. Shaner, N. C.; Steinbach, P. A.; Tsien, R. Y., A guide to choosing fluorescent proteins. Nat Methods 2005, 2 (12), 905-9.

105. Lee, J. Y.; Finkelstein, I. J.; Arciszewska, L. K.; Sherratt, D. J.; Greene, E. C., Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA.

Mol Cell 2014, 54 (5), 832-43.

142

Na Young Cheon, Graduate student

Last updated 2022.12.07

Department of Biological Sciences

Ulsan National Institute of Science and Technology Room 605, Building 110, UNIST-gil 50

Eonyang-eup, Ulju-gun, Ulsan, South Korea

Lab Phone: (82) 52-217-2587 Mobile phone: (82) 10-9360-3579 E-mail: [email protected]

EDUCATION & RESEARCH EXPERIENCE

Combined M.S./Ph.D. course 2019 ~ 2023

B.S. in School of Life Science 2019

UNIST(Ulsan National University of Science and Technology), South Korea Advisor: Ja Yil Lee, Ph.D.

PUBLICATIONS

1. Na Young Cheon, (2022), Biophysical and biochemical approaches for R-loop sensing mechanism. Gene Expression.

2. Na Young Cheon, (2022), Studying R-loop recognizing proteins using single-molecule DNA curtain technique and electrophoretic mobility shift assay, Methods in Molecular Biology.

3. Hyun Je Kang*, Na Young Cheon*, (2020) TonEBP recognizes R-loops and initiates m6A RNA methylation for R-loop resolution, Nucleic Acids Research, 49(1):269- 284, DOI: 10.1093/nar/gkaa1162

4. Yujin Kang*, Na Young Cheon*, Jongjin Cha*, (2020) High-throughput single-molecule imaging system using nanofabricated trenches and fluorescent DNA-binding proteins.

Biotechnology and Bioengineering. 117(6):1640-1648. DOI: 10.1002/bit.27331.

5. Na Young Cheon, (2019) Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B, Nucleic Acids Research. 47(16):8337-8347, DOI: 10.1093/nar/gkz629

*: these authors contributed equally to each work

143 AWARDS & PRESENTATIONS

1. Asan Foundation scholarship 2020~Present - Biomedical graduate scholarship

2. 2021 Young Bio Research Award 2021 - Red Ribbon Award

3. 2020 KPS(Korean Physics Society) Fall Meeting 2020 - Excellent oral presentation award

4. 2020 Institute for Basic Science, Center for Genomic Integrity Award 2020 5. 2020 Annual meeting of the Biophysical Society(BPS) 2020 - Platform presentation

6. 2019 KPS(Korean Physics Society) Spring Meeting 2019 - Oral presentation

7. 2018 International conference of KSMCB 2018 (Korean Society for Molecular and Cellular Biology)

- Excellent poster award

8. 2018 KPS(Korean Physics Society) Fall Meeting 2018 - Excellent poster award

9. UNIST excellent scholarship (Overseas scholarship) 2016

REFERENCES

Professor Ja Yil Lee School of Life Sciences

Ulsan National Institute of Science and Technology Room 601-6, Building 110, UNIST-gil 50

Eonyang-eup, Ulju-gun, Ulsan, South Korea Tel: (82) 52-217-3069

E-mail: [email protected]

144

Acknowledgement

5๋…„์˜ ์—ฐ๊ตฌ์‹ค ์ƒํ™œ ๋™์•ˆ ๋ฌผ์‹ฌ์–‘๋ฉด์œผ๋กœ ์ด๋Œ์–ด ์ฃผ์‹  ์ด์ž์ผ ๊ต์ˆ˜๋‹˜, ์ •๋ง ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ๊ต์ˆ˜๋‹˜์œผ๋กœ๋ถ€ํ„ฐ ๊ณผํ•™์ž๋กœ์„œ ์—ฐ๊ตฌ์— ์ž„ํ•˜๋Š” ํƒœ๋„์™€ ๋งˆ์Œ๊ฐ€์ง์— ๋Œ€ํ•ด ๋ฐฐ์› ์Šต๋‹ˆ๋‹ค. 605ํ˜ธ์˜ ์ฒซ ๋ฐ•์‚ฌ ํ•™์ƒ์œผ๋กœ์„œ ํ•ญ์ƒ ์—ฐ๊ตฌ ์‹ค์˜ ๋ฏธ๋ž˜์™€ ํ›„๋ฐฐ๋“ค์— ๋Œ€ํ•œ ์ฑ…์ž„์„ ๋งˆ์Œ์— ์ƒˆ๊ธฐ๊ณ  ๋”์šฑ ์ •์ง„ํ•˜๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๋˜ํ•œ ๊ณต๋™์—ฐ๊ตฌ ์ง€๋„์— ํž˜์จ ์ฃผ์‹  ๋ช…๊ฒฝ์žฌ ๊ต์ˆ˜๋‹˜, Orlando Schรคrer ๊ต์ˆ˜๋‹˜, ๋ฐ•์‚ฌ๊ณผ์ • ๋™์•ˆ ํ•ด ์ฃผ์‹  ์ง„์‹ฌ ์–ด ๋ฆฐ ์ง€๋„์™€ ์กฐ์–ธ์€ ์ €์˜ ์ง„๋กœ์™€ ์—ฐ๊ตฌ์— ํฐ ๋„์›€์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์ด ์™ธ์—๋„ ์ œ ๋…ผ๋ฌธ์„ ์‹ฌ์‚ฌ์— ์ฐธ์—ฌํ•ด ์ฃผ์‹  ์ด์ฐฝ์šฑ ๊ต์ˆ˜๋‹˜, ์ด๊ด‘๋ก ๊ต์ˆ˜๋‹˜๊ป˜ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์กธ์—…๋…ผ๋ฌธ์— ๋Œ€ ํ•œ ๊ฐ’์ง„ ์กฐ์–ธ์œผ๋กœ ์ €์˜ ๊ณผํ•™์  ์‹œ์•ผ๋ฅผ ๋„“ํ˜€ ์ฃผ์…”์„œ ์•ž์œผ๋กœ์˜ ์—ฐ๊ตฌ์— ํฐ ๋„์›€์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์—ฐ๊ตฌ์‹ค ์ƒํ™œ์˜ ์›๋™๋ ฅ์ด ๋˜์—ˆ๋˜ ์œ ์ง„ ์–ธ๋‹ˆ, ์ˆ˜๋นˆ์ด๋“ค, ์†Œ์˜์ด์™€ ์˜์„œ, ๊ทธ๋ฆฌ๊ณ  ๊ฐ์ž์˜ ์ž๋ฆฌ์—์„œ ์ตœ์„ ์„ ๋‹ค ํ•˜๊ณ  ์žˆ๋Š” ์นœ๊ตฌ๋“ค์—๊ฒŒ๋„ ๊ฐ์‚ฌํ•จ์„ ์ „ํ•ฉ๋‹ˆ๋‹ค. ์ข‹์€ ์‚ฌ๋žŒ๋“ค๊ณผ ํ•จ๊ป˜ ๋ผ๋ฉด ์–ด๋–ค ํž˜๋“  ์ผ๋„ ์ฆ๊ฒ๊ฒŒ ํ—ค์ณ ๋‚˜ ๊ฐˆ ์ˆ˜ ์žˆ์Œ์„ ์—ฌ๋Ÿฌ๋ถ„ ๋•๋ถ„์— ๋ฐฐ์› ์Šต๋‹ˆ๋‹ค.

ํŠนํžˆ ์œ ์ง„ ์–ธ๋‹ˆ๋Š” ์ œ๊ฐ€ ๋ณด๊ณ  ์‹ถ๋”๋ผ๋„ ์šธ์ง€ ๋ง๊ณ  ์–ธ์ œ๋“  ์ €๋ฅผ ์ฐพ์•„์˜ค์„ธ์š”!

๋งˆ์ง€๋ง‰์œผ๋กœ ํ•ญ์ƒ ์ €๋ฅผ ์ง€์ง€ํ•ด ์ฃผ๊ณ  ์‘์›ํ•ด ์ฃผ๋Š” ๊ฐ€์กฑ๋“ค์—๊ฒŒ๋„ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„์˜ ๋„์›€์— ๋ณด๋‹ตํ•  ์ˆ˜ ์žˆ๋Š” ์—ฐ๊ตฌ์ž๊ฐ€ ๋˜๋„๋ก ์ตœ์„ ์„ ๋‹คํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์•ž์œผ๋กœ๋„ ์ œ๊ฐ€ ์–ด๋””์— ์žˆ๋“  ์šฐ๋ฆฌ BioCheMP์˜ ์ถœ์‹ ์ž„์„ ์žŠ์ง€ ์•Š๊ณ , ์—ฐ๊ตฌ์‹ค์˜ ๋ฐœ์ „์„ ์ง„์‹ฌ์œผ๋กœ ๋ฐ”๋ผ๊ฒ ์Šต ๋‹ˆ๋‹ค.

Dokumen terkait