• Tidak ada hasil yang ditemukan

be measured in the CSS spectrogram, because the fluctuations in the vicinity of the measurement position are carried in the scattered beam like the interferometry. This interferometric signals are characterized by being symmetric on the CSS spectrogram. Therefore, when analyzing CSS data, it is necessary to perform comparative analysis with data from other diagnostics to prevent misinterpretation.

In conclusion, the CSS will make a great contribution to small scale turbulence studies such as its physical properties and suppression mechanism. Furthermore, we expect to make the contribution to the field of turbulence simulation of trapped electron mode (TEM) and ETG mode, which was difficult to prove experimentally. In the future, more intensive analyses of CSS data will be carried out for studies of physics associated with small scale turbulence such as characteristics of ETG or trapped electron mode (TEM) in KSTAR H-mode or hybrid mode edge and their contribution to the plasma performance *This work was supported by the Ministry of Science and ICT of Korea under the KSTAR project and the NRF of Korea under contract Nos. NRF-2014M1A7A1A03029865 and NRF- 2015M1A7A02002627.

Appendix

A.

1. Fourier transform and inverse Fourier transform:

π‘“π‘“οΏ½π‘˜π‘˜οΏ½βƒ—,πœ”πœ”οΏ½= οΏ½ 𝑑𝑑𝑑𝑑+∞

βˆ’βˆž οΏ½ 𝑑𝑑+∞ 3π‘Ÿπ‘Ÿ

βˆ’βˆž 𝑓𝑓(π‘Ÿπ‘Ÿβƒ—,𝑑𝑑)π‘’π‘’βˆ’π‘–π‘–οΏ½π‘˜π‘˜οΏ½βƒ—Β·π‘Ÿπ‘Ÿβƒ—βˆ’πœ”πœ”π‘‘π‘‘οΏ½ (A. 1) 𝑓𝑓(π‘Ÿπ‘Ÿβƒ—,𝑑𝑑) = οΏ½ π‘‘π‘‘πœ”πœ”

2πœ‹πœ‹

+∞

βˆ’βˆž οΏ½ 𝑑𝑑3π‘˜π‘˜

(2πœ‹πœ‹)3

+∞

βˆ’βˆž π‘“π‘“οΏ½π‘˜π‘˜οΏ½βƒ—,πœ”πœ”οΏ½π‘’π‘’π‘–π‘–οΏ½π‘˜π‘˜οΏ½βƒ—Β·π‘Ÿπ‘Ÿβƒ—βˆ’πœ”πœ”π‘‘π‘‘οΏ½ (A. 2) 2. Parseval’s Theorem:

οΏ½ 𝑑𝑑𝑑𝑑+∞

βˆ’βˆž |𝑓𝑓(𝑑𝑑)|2= οΏ½ π‘‘π‘‘πœ”πœ”

2πœ‹πœ‹

+∞

βˆ’βˆž |𝑓𝑓(πœ”πœ”)|2 (A. 3) 3. Delta function:

οΏ½ 𝑑𝑑𝑑𝑑 +∞ π‘’π‘’π‘–π‘–πœ”πœ”π‘‘π‘‘

βˆ’βˆž = 2πœ‹πœ‹π›Ώπ›Ώ(πœ”πœ”) (A. 4)

οΏ½ 𝑑𝑑+∞ 3π‘Ÿπ‘Ÿ π‘’π‘’π‘–π‘–π‘˜π‘˜οΏ½βƒ—Β·π‘Ÿπ‘Ÿβƒ—

βˆ’βˆž = (2πœ‹πœ‹)3π›Ώπ›ΏοΏ½π‘˜π‘˜οΏ½βƒ—οΏ½ (A. 5) 4. Integral formula I:

οΏ½ 𝑑𝑑𝑑𝑑 π‘’π‘’βˆ’π‘₯π‘₯

2 π‘Žπ‘Ž2 +∞

βˆ’βˆž =π‘Žπ‘Žβˆšπœ‹πœ‹ (A. 6) 5. Integral formula II:

οΏ½ 𝑑𝑑𝑑𝑑+∞

βˆ’βˆž π‘’π‘’βˆ’π‘₯π‘₯

2

π‘Žπ‘Ž2βˆ’π‘–π‘–π‘™π‘™π‘₯π‘₯ = οΏ½ 𝑑𝑑𝑑𝑑+∞

βˆ’βˆž π‘’π‘’βˆ’ 1π‘Žπ‘Ž2(π‘₯π‘₯2+π‘–π‘–π‘Žπ‘Ž2π‘₯π‘₯βˆ’π‘Žπ‘Ž

4𝑙𝑙2 4 +π‘Žπ‘Ž4𝑙𝑙2

4 )

= οΏ½ 𝑑𝑑𝑑𝑑+∞

βˆ’βˆž π‘’π‘’βˆ’ 1π‘Žπ‘Ž2(π‘₯π‘₯+π‘–π‘–π‘Žπ‘Ž

2𝑙𝑙

2 )2π‘’π‘’βˆ’π‘Žπ‘Ž24𝑙𝑙2

= π‘Žπ‘Žπœ‹πœ‹π‘’π‘’βˆ’π‘Žπ‘Ž24𝑙𝑙2 (A. 7) 6. Integral formula III:

οΏ½+𝐿𝐿 𝑑𝑑𝑑𝑑 π‘’π‘’π‘–π‘–π‘Žπ‘Žπ‘₯π‘₯

2𝑧𝑧

βˆ’πΏπΏ2𝑧𝑧

=οΏ½π‘’π‘’π‘–π‘–π‘Žπ‘Žπ‘₯π‘₯ π‘–π‘–π‘Žπ‘Ž οΏ½

βˆ’πΏπΏπ‘§π‘§/2 +𝐿𝐿𝑧𝑧/2

= π‘’π‘’π‘–π‘–π‘Žπ‘ŽπΏπΏ2π‘§π‘§βˆ’ π‘’π‘’βˆ’π‘–π‘–π‘Žπ‘ŽπΏπΏ2 𝑧𝑧 π‘–π‘–π‘Žπ‘Ž

= 2𝑖𝑖sin(π‘Žπ‘ŽπΏπΏπ‘§π‘§

π‘–π‘–π‘Žπ‘Ž 2 )= 𝐿𝐿𝑧𝑧

sin(π‘Žπ‘ŽπΏπΏπ‘§π‘§ π‘Žπ‘ŽπΏπΏ2 )𝑧𝑧

2

=𝐿𝐿𝑧𝑧 sincοΏ½π‘Žπ‘ŽπΏπΏπ‘§π‘§

2 οΏ½ (A. 8)

B.

1. Product rule with del operator:

βˆ‡οΏ½π΄π΄βƒ—Β·π΅π΅οΏ½βƒ—οΏ½=οΏ½π΄π΄βƒ—Β·βˆ‡οΏ½π΅π΅οΏ½βƒ—+οΏ½π΅π΅οΏ½βƒ—Β·βˆ‡οΏ½π΄π΄βƒ—+π΄π΄βƒ—Γ—οΏ½βˆ‡Γ—π΅π΅οΏ½βƒ—οΏ½+π΅π΅οΏ½βƒ—Γ—οΏ½βˆ‡Γ—π΄π΄βƒ—οΏ½ (B. 1.1)

𝐴𝐴⃗× (𝐡𝐡�⃗×𝐢𝐢⃗) = 𝐡𝐡�⃗(𝐴𝐴⃗·𝐢𝐢)οΏ½οΏ½οΏ½οΏ½βƒ— βˆ’ 𝐢𝐢⃗(𝐴𝐴⃗·𝐡𝐡)οΏ½οΏ½οΏ½οΏ½βƒ— (𝐡𝐡. 1.2) 2. First term of Eq. (2.23 (a)):

οΏ½π‘…π‘…οΏ½βƒ—Β·βˆ‡οΏ½π‘£π‘£βƒ—= �𝑅𝑅π‘₯π‘₯ πœ•πœ•

πœ•πœ•π‘‘π‘‘+𝑅𝑅𝑦𝑦 πœ•πœ•

πœ•πœ•π‘‘π‘‘+𝑅𝑅𝑧𝑧 πœ•πœ•

πœ•πœ•π‘‘π‘‘οΏ½ 𝑣𝑣⃗(𝑑𝑑′)

= 𝑅𝑅π‘₯π‘₯𝑑𝑑𝑣𝑣⃗

𝑑𝑑𝑑𝑑

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ +𝑅𝑅𝑦𝑦𝑑𝑑𝑣𝑣⃗

𝑑𝑑𝑑𝑑

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ +𝑅𝑅𝑧𝑧𝑑𝑑𝑣𝑣⃗

𝑑𝑑𝑑𝑑

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘

=π‘£π‘£βƒ—Μ‡οΏ½π‘…π‘…οΏ½βƒ—Β·βˆ‡π‘‘π‘‘β€²οΏ½ (B. 2) 3. Second term of Eq. (2.23 (a)):

(π‘£π‘£βƒ—Β·βˆ‡)𝑅𝑅�⃗= (π‘£π‘£βƒ—Β·βˆ‡)π‘Ÿπ‘Ÿβƒ— βˆ’(π‘£π‘£βƒ—Β·βˆ‡)π‘Ÿπ‘ŸοΏ½οΏ½οΏ½βƒ—β€² (B. 3.1)

=𝑣𝑣⃗ βˆ’ 𝑣𝑣⃗(π‘£π‘£βƒ—Β·βˆ‡π‘‘π‘‘β€²) (B. 3.2) 4. Similar to Eq. (B.2), Eq. (B.3.1) becomes:

(π‘£π‘£βƒ—Β·βˆ‡)π‘Ÿπ‘Ÿβƒ—=�𝑣𝑣π‘₯π‘₯ πœ•πœ•

πœ•πœ•π‘‘π‘‘+𝑣𝑣𝑦𝑦 πœ•πœ•

πœ•πœ•π‘‘π‘‘+𝑣𝑣𝑧𝑧 πœ•πœ•

πœ•πœ•π‘‘π‘‘οΏ½(𝑑𝑑𝑑𝑑�+𝑑𝑑𝑑𝑑�+𝑑𝑑𝑑𝑑̂) =𝑣𝑣⃗ (B. 4) (π‘£π‘£βƒ—Β·βˆ‡)π‘Ÿπ‘ŸοΏ½οΏ½οΏ½βƒ—β€² =𝑣𝑣⃗(π‘£π‘£βƒ—Β·βˆ‡π‘‘π‘‘β€²) (B. 5) 5. Third term of Eq. (2.23 (a)):

βˆ‡Γ—π‘£π‘£βƒ—= οΏ½πœ•πœ•π‘£π‘£π‘§π‘§

πœ•πœ•π‘‘π‘‘ βˆ’

πœ•πœ•π‘£π‘£π‘¦π‘¦

πœ•πœ•π‘‘π‘‘ οΏ½ 𝑑𝑑�+οΏ½πœ•πœ•π‘£π‘£π‘₯π‘₯

πœ•πœ•π‘‘π‘‘ βˆ’

πœ•πœ•π‘£π‘£π‘§π‘§

πœ•πœ•π‘‘π‘‘οΏ½ 𝑑𝑑�+οΏ½πœ•πœ•π‘£π‘£π‘¦π‘¦

πœ•πœ•π‘‘π‘‘ βˆ’

πœ•πœ•π‘£π‘£π‘₯π‘₯

πœ•πœ•π‘‘π‘‘ οΏ½ 𝑑𝑑̂

= �𝑑𝑑𝑣𝑣𝑧𝑧 𝑑𝑑𝑑𝑑′

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ βˆ’ 𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑′

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ οΏ½ 𝑑𝑑�+�𝑑𝑑𝑣𝑣π‘₯π‘₯ 𝑑𝑑𝑑𝑑′

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ βˆ’ 𝑑𝑑𝑣𝑣𝑧𝑧

𝑑𝑑𝑑𝑑′

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ οΏ½ 𝑑𝑑�+�𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑′

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ βˆ’ 𝑑𝑑𝑣𝑣π‘₯π‘₯

𝑑𝑑𝑑𝑑′

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘οΏ½ 𝑑𝑑̂

=βˆ’π‘Žπ‘Žβƒ—Γ—βˆ‡π‘‘π‘‘β€² (B. 6)

6. In the same way as Eq. (B.6), Fourth term of Eq. (2.23 (a)) becomes:

βˆ‡Γ—π‘…π‘…οΏ½βƒ—= βˆ‡Γ—π‘Ÿπ‘Ÿβƒ— βˆ’ βˆ‡Γ—π‘Ÿπ‘ŸοΏ½οΏ½οΏ½βƒ—β€²

= βˆ’π‘£π‘£βƒ—Γ—βˆ‡π‘‘π‘‘β€² (B. 7) where βˆ‡Γ—π‘Ÿπ‘Ÿβƒ—= 0

7. Calculation required for Eq. (2.30):

From Fig. 2.3,

𝑐𝑐(𝑑𝑑 βˆ’ 𝑑𝑑′) =𝑅𝑅 => 𝑐𝑐2(𝑑𝑑 βˆ’ 𝑑𝑑′)2=𝑅𝑅=𝑅𝑅�⃗·𝑅𝑅�⃗ (B. 8) Differentiate with respect to 𝑑𝑑:

2𝑐𝑐2(𝑑𝑑 βˆ’ 𝑑𝑑′)οΏ½1βˆ’πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ οΏ½= 2π‘…π‘…οΏ½βƒ—Β·πœ•πœ•π‘…π‘…οΏ½βƒ—

πœ•πœ•π‘‘π‘‘ => 𝑐𝑐𝑅𝑅 οΏ½1βˆ’πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ οΏ½=π‘…π‘…οΏ½βƒ—Β·πœ•πœ•π‘…π‘…οΏ½βƒ—

πœ•πœ•π‘‘π‘‘ (B. 9)

πœ•πœ•π‘…π‘…οΏ½βƒ—

πœ•πœ•π‘‘π‘‘ =βˆ’πœ•πœ•π‘Ÿπ‘ŸοΏ½οΏ½οΏ½βƒ—β€²

πœ•πœ•π‘‘π‘‘ =βˆ’πœ•πœ•π‘Ÿπ‘ŸοΏ½οΏ½οΏ½βƒ—β€²

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ =βˆ’π‘£π‘£βƒ—πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ => 𝑐𝑐𝑅𝑅 οΏ½1βˆ’πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ οΏ½=βˆ’π‘…π‘…οΏ½βƒ—Β·π‘£π‘£βƒ—πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘

=> 𝑐𝑐𝑅𝑅=πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ �𝑅𝑅�⃗·�𝑐𝑐𝑅𝑅� βˆ’ 𝑣𝑣⃗�� (B. 10)

πœ•πœ•π‘‘π‘‘β€²

πœ•πœ•π‘‘π‘‘ = 𝑐𝑐𝑅𝑅

�𝑐𝑐𝑅𝑅 βˆ’ 𝑅𝑅�⃗·𝑣𝑣⃗� (𝐡𝐡. 11)

References

[1] M. Greenwald et al, β€œA new look at density limits in tokamaks”. Nuclear fusion, 28, 2199, 1988.

[2] Martin Greenwald et al, β€œDensity limits in toroidal plasmas”, Plasma Physics and Controlled Fusion, 44, R27, 2002.

[3] G.S. Lee et al, β€œDesign and construction of the kstar tokamak”, Nuclear Fusion, 41(10):1515- 1523, 2001.

[4] M. Shimadae, β€œChapter 1: Overview and summary”, Nuclear Fusion, 47(6):S1-S17, 2007.

[5] W. Dorland, F.Jenko et al, β€œElectron Temperature Gradient Turbulence”, Physical Review Letters, 85, 2000.

[6] W. Lee et al, β€œDesign of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research”, Review of Scientific Instruments, 87, 043501, 2016.

[7] D.R. Smith et al, β€œA collective scattering system for measuring electron gyroscale fluctuations on the National Spherical Torus Experiment”, Review of Scientific Instruments, 79, 123501, 2008.

[8] E. Mazzucato et al, β€œShort-Scale Turbulent Fluctuations Driven by the electron-Temperature Gradient in the National Spherical Torus Experiment”, Physical Review Letters, 101, 075001, 2008.

[9] H. Park, β€œTokamak Plasma Wave Studies via Multi-Channel Far Infrared Laser Scattering”, PhD Thesis, UCLA, Los Angeles, CA, 1984.

[10] W. Lee, β€œCollective Thomson Scattering System for Transport Study on NSTX”, PhD Thesis, POSTECH, Pohang, 2008.

[11] J.D. Jackson, β€œClassical Electrodynamics Third Edition”, John Wiley & Sons, 1999.

[12] W. Lee et al, β€œPoloidal rotation velocity measurement with an MIR system on KSTAR”, Journal of Instrumentation, 8, C10018, 2013.

[13] W. Lee et al, β€œMicrowave imaging reflectometry for density fluctuation measurement on KSTAR”, Nuclear Fusion, 54, 023012, 2014.

[14] Y.U. Nam et al, β€œAnalysis of edge density fluctuation measured by trial KSTAR beam emission spectroscopy system”, Review of Scientific Instruments, 83, 10D530, 2012.

[15] D.H. Chang et al, β€œDesign of neutral beam injection system for KSTAR tokamak”, Fusion Engineering and Design, 86, 2-3, 2011.

[16] G.S. Yun et al, β€œDevelopment of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations”, Review of Scientific Instruments, 81, 10D930, 2010.

[17] G.S. Yun et al, β€œQuasi 3D ECE imaging system for study of MHD instabilities in KSTAR”, Review of Scientific Instruments, 85, 11D820, 2014.

[18] D.J. Lee et al, β€œA large-aperture strip-grid beam splitter for partially combined two millimeter- wave diagnostics on Korea Superconducting Tokamak Advanced Research”, Review of Scientific Instruments, 90, 014703, 2019.

[19] P.F. Goldsmith, β€œQuasioptical System: Gaussian Beam Quasioptical Propagation and applications”, Wiley-IEEE Press, p.235, 1998.

[20] W.J. Smith, β€œModern Optical engineering: The Design of Optical System”, McGraw-Hill, p.187, 1990.

[21] B. Coppi et al, β€œInstabilities due to temperature gradients in complex magnetic field configurations”, Physics of Fluids, 10, 1966.

[22] P. Mantica et al, β€œExperimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the jet tokamak”, Physical Review Letters, 102, 2009.

[23] X. Garbet et al, β€œPhysics of transport in tokamaks”, Plasma Physics and Controlled Fusion, 46, 2004.

[24] A.A. Ware , β€œPinch-Effect Oscillations in an Unstable Tokamak Plasma”, Physical Review Letters, 25, 916, 1970.

[25] B. Coppi et al, β€œIon-Mixing Mode and Model for Density Rise in Confined Plasmas”, Physical Review Letters, 41, 551, 1978.

[26] W.M. Tang et al, β€œMicroinstabilities in weak density gradient tokamak systems”, Physics of Fluids, 29, 3715, 1986.

[27] V.V. Yankov, JETP Lett, 60, 171, 1994

[28] M.B. Isichenko et al, β€œAnomalous pinch effect and energy exchange in tokamaks”, Physics of Plasmas, 3, 1916, 1996.

[29] D.R. Baker et al, β€œDensity profile consistency and its relation to the transport of trapped versus passing electrons in tokamaks” Physics of Plasmas, 5, 2936, 1998.

[30] V. Naulin et al, β€œEquipartition and Transport in Two-Dimensional Electrostatic Turbulence”,

Physical Review Letters, 81, 4148, 1998.

[31] H. Norman et al, β€œSimulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping”, Nuclear Fusion, 30, 983, 1990.

[32] D.R. Ernst et al, β€œRole of trapped electron mode turbulence in internal transport barrier control in the Alcator C-Mod Tokamak”, Physics of Plasmas, 11, 2637, 2004.

[33] C. Angioni et al, β€œTheory-based modeling of particle transport in ASDEX Upgrade H-mode plasmas, density peaking, anomalous pinch and collisionality”, Physics of Plasmas, 10, 3225, 2003.

Acknowledgement

λ‹€μ‚¬λ‹€λ‚œν–ˆλ˜ 2020년이 μ§€λ‚˜κ³ , 2021λ…„ μƒˆν•΄κ°€ λ˜μ—ˆμŠ΅λ‹ˆλ‹€. λŠ¦κ²Œλ‚˜λ§ˆ κ°μ‚¬μ˜ 글을 μ“°κ³  μžˆλŠ” μ§€κΈˆ, μ§€λ‚œ μ‹œκ°„ λ™μ•ˆ μžˆμ—ˆλ˜ λ§Žμ€ 일듀이 생각이 λ‚©λ‹ˆλ‹€. λ°•μ‚¬ν•™μœ„λΌλŠ” μƒˆλ‘œμš΄ 도전을 μ‹œμž‘ν•˜κΈ° μœ„ν•΄ μšΈμ‚°μœΌλ‘œ κ°„μ§€κ°€ μ—Šκ·Έμ œ 같은데 벌써 7λ…„μ΄λΌλŠ” μ‹œκ°„μ΄ 흘러 쑸업을 ν•˜κ²Œ λœλ‹€λ‹ˆ κΏˆμ„ κΎΈλŠ” 것 같은 λŠλ‚Œμž…λ‹ˆλ‹€. μ§§λ‹€λ©΄ μ§§μ§€λ§Œ μ €μ—κ²ŒλŠ” λ¬΄μ²™μ΄λ‚˜ κΈ΄ μ‹œκ°„μ΄μ—ˆκ³ , κ·Έ λ™μ•ˆ μšΈμ‚°, 포항, λŒ€μ „μ—μ„œ λ§Œλ‚˜ 인연을 λ§Ίκ³  μ €λ₯Ό λ„μ™€μ£Όμ…¨λ˜ λ§Žμ€ λΆ„λ“€κ»˜ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. 특히 ν•™μœ„ κ³Όμ • 막바지에 많이 νž˜λ“€μ–΄ ν•˜λ˜ μ €λ₯Ό 응원 ν•΄μ£Όμ‹œλ˜ λ§Žμ€ λΆ„λ“€κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€.

λ¨Όμ € λ””νŽœμŠ€ 심사와 이 논문을 μ™„μ„± ν•  수 μžˆλ„λ‘ 도와주신 λ°•ν˜„κ±° κ΅μˆ˜λ‹˜, 인용균 κ΅μˆ˜λ‹˜, μ΅œμ€λ―Έ κ΅μˆ˜λ‹˜, λ‚¨μš©μš΄ λ°•μ‚¬λ‹˜, 이우창 λ°•μ‚¬λ‹˜κ»˜ μ§„μ‹¬μœΌλ‘œ κ°μ‚¬λ“œλ¦½λ‹ˆλ‹€. 7λ…„λ™μ•ˆ μ €λ₯Ό μ§€λ„ν•΄μ£Όμ‹œκ³ , μ œκ°€ ν•˜λŠ” 일이 λ§Žμ€ 지원을 아끼지 μ•ŠμœΌμ…¨λ˜ λ°•ν˜„κ±° κ΅μˆ˜λ‹˜κ»˜ λ‹€μ‹œ ν•œλ²ˆ κ°μ‚¬λ“œλ¦½λ‹ˆλ‹€. ν•΅μœ΅ν•© ν•™κ³„μ—μ„œ λŒ€κ°€μ˜ μ œμžκ°€ λœλ‹€λŠ” 것이 쉽지가 μ•Šμ€ 일인데, 그런 기회λ₯Ό μ£Όμ‹œκ³  λ§ˆμ§€λ§‰κΉŒμ§€ μ±™κ²¨μ£Όμ…”μ„œ λ§Žμ€ μ€ν˜œλ₯Ό μž…μ€ 것 κ°™μŠ΅λ‹ˆλ‹€. 그리고, 제2의 지도 κ΅μˆ˜λ‹˜ 이라고 해도 λΆ€μ‘±ν•˜μ§€ μ•ŠμœΌμ‹  이우창 λ°•μ‚¬λ‹˜κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. μ œκ°€ μ„±μž₯ ν•  수 μžˆλ„λ‘ λ§Žμ€ κ°€λ₯΄μΉ¨μ„ μ£Όμ…¨κ³ , μ—°κ΅¬μžμ˜ 참된 λͺ¨μŠ΅μ΄ 무엇인지 보고 배울 수 μžˆμ—ˆλ˜ 것 κ°™μŠ΅λ‹ˆλ‹€. κ΅­κ°€ν•΅μœ΅ν•©μ—°κ΅¬μ†Œμ—μ„œ μ°Έμ—¬μ—°κ΅¬μžλ‘œμ„œ 연ꡬλ₯Ό ν•  수 μžˆλ„λ‘ κΈ°νšŒμ™€ λ§Žμ€ 지원을 ν•΄μ£Όμ…¨λ˜ λ‚¨μš©μš΄ λ°•μ‚¬λ‹˜κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€.

ν•™μœ„ κ³Όμ • 막바지에 λ°©ν™©ν•˜λ˜ μ €λ₯Ό μž‘μ•„μ£Όμ‹œκ³ , 쒋은 λ§μ”€ν•΄μ£Όμ…¨λ˜ μ΄κ·œλ™ λ°•μ‚¬λ‹˜, κ³ μ›ν•˜ λ°•μ‚¬λ‹˜κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. 그리고 μ΄μž¬ν˜„ λ°•μ‚¬λ‹˜, μ΅œλ―Όμ€€ λ°•μ‚¬λ‹˜, κΉ€λ―Όμš° λ°•μ‚¬λ‹˜, λ‚¨μœ€λ²” λ°•μ‚¬λ‹˜κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. 비둝 ν•™κ΅λŠ” λ‹€λ₯΄μ§€λ§Œ, 저에겐 선배와 κ°™μ•˜κ³ , CSS μž₯치 개발 및 μš΄μ˜ν•  수 있게 λ§Žμ€ 도움을 λ°›μ•˜μŠ΅λ‹ˆλ‹€. νŽΈν•œ 친ꡬ κ°™μ•˜λ˜ 그리고 μ‚¬μˆ˜μ˜€λ˜ μž„μ€€μ–΅ λ°•μ‚¬λ‹˜, κΉ€λ―Όν˜Έ λ°•μ‚¬λ‹˜κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. λŒ€μ „μ—μ„œ 적응할 수 μžˆλ„λ‘ μ €λ₯Ό 많이 챙겨주신 κΉ€μ„±κ΅­ λ°•μ‚¬λ‹˜, ν•œμ’…μ› κΈ°μˆ μ›λ‹˜κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. μšΈμ‚°μ—μ„œ 잘 챙겨 μ£Όμ‹œλ˜ 이인근 λ°•μ‚¬λ‹˜, λ₯˜λ―Όμš° λ°•μ‚¬λ‹˜κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. 그리고 Lab은 λ‹€λ₯΄μ§€λ§Œ 동기인 규빈이, 후배와 κ°™μ•˜λ˜ μ§„μ˜, μΈν•œμ΄λ„ 남은 ν•™μ—… 잘 λ§ˆλ¬΄λ¦¬ν•˜μ—¬ 쒋은 κ²°κ³Όκ°€ 있기λ₯Ό λ°”λžλ‹ˆλ‹€. 같은 뢄야에 계신 λͺ¨λ“  λΆ„λ“€κ³Ό 즐겁게 μ—°κ΅¬ν•˜λ©΄μ„œ μ†Œμ€‘ν•œ 인연 κ³„μ†ν•΄μ„œ 이어가기λ₯Ό

λ°”λžλ‹ˆλ‹€.

νž˜λ“€ λ•Œ μœ„λ‘œν•΄μ£Όκ³ , μ‘μ›ν•΄μ£Όλ˜ 상인동 μΉœκ΅¬λ“€μΈ 천ꡭ, 경재, λ™ν•œ, μŠΉν™˜μ΄ μ—κ²Œλ„ κ°μ‚¬μ˜ 말을 μ „ν•©λ‹ˆλ‹€. λ°•μ‚¬ν•™μœ„ 마무리 쀑인 기범이도 쒋은 κ²°κ³Όκ°€ 있기λ₯Ό 바라고, ν•¨κ»˜ν•΄μ„œ μ’‹μ•˜λ‹€λΌλŠ” 말을 μ „ν•˜κ³  μ‹ΆμŠ΅λ‹ˆλ‹€. 원상이, μ£Όν˜•μ΄ μ—κ²Œλ„ κ°μ‚¬μ˜ 말을 μ „ν•©λ‹ˆλ‹€. λŒ€ν•™ μ‹œμ ˆ 같이 λ„μ„œκ΄€μ— λͺ¨μ—¬ κ³΅λΆ€ν•˜κ³ , ν•¨κ»˜ λ†€μ•˜λ˜ μŠ΅κ΄€μœΌλ‘œ 인해 μ œκ°€ μ—¬κΈ°κΉŒμ§€ 올 수 μžˆμ—ˆλ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€. 그리고 μΈμƒμ˜ λ©˜ν† μ΄μž, 베프인 남이 μ—κ²Œλ„ κ°μ‚¬μ˜ 말을 μ „ν•˜κ³ , νž˜λ“  μˆœκ°„λ§ˆλ‹€ 항상 λ‚˜μ˜ λ²„νŒ€λͺ©μ΄ λ˜μ–΄μ€˜μ„œ κ³ λ§™κ²Œ μƒκ°ν•©λ‹ˆλ‹€.

λ§ˆμ§€λ§‰μœΌλ‘œ μ €λ₯Ό μ•„λ‚Œμ—†μ΄ μ§€μ›ν•΄μ£Όμ‹œκ³  ν‚€μ›Œμ£Όμ‹  μ–΄λ¨Έλ‹ˆμ™€ ν•˜λŠ˜μ— 계신 μ•„λ²„μ§€κ»˜ κ°μ‚¬μ˜ 말과 μ‚¬λž‘ν•œλ‹€λŠ” 말을 λ“œλ¦¬κ³  μ‹ΆμŠ΅λ‹ˆλ‹€. 특히 ν•™μœ„κ³Όμ •μ€‘μ— κ°€κΉŒμ΄ κ³„μ…¨μ§€λ§Œ 자주 λͺ» μ°Ύμ•„ λ΅ˆμ—ˆλ˜ 것이 κ°€μž₯ ν›„νšŒκ°€ λ©λ‹ˆλ‹€. 더 ν›„νšŒν•˜μ§€ μ•Šκ²Œ νš¨λ„ ν•˜λ©΄μ„œ 살도둝 ν•˜κ² μŠ΅λ‹ˆλ‹€. 그리고 μ˜€λž«λ™μ•ˆ 인연을 λ§Ίμ—ˆλ˜ μž₯κ²½μžλ‹˜, κΉ€λ―Έν˜œμ”¨κ»˜λ„ κ°μ‚¬μ˜ 말씀을 λ“œλ¦½λ‹ˆλ‹€. κ³„μ†ν•΄μ„œ 이 μ†Œμ€‘ν•œ 인연듀 μ˜€λž˜κ°€κΈ°λ₯Ό κ°„μ ˆνžˆ λ°”λžλ‹ˆλ‹€.

μ΄λ™μž¬ 올림

Curriculum Vitae

Name : Dong Jae Lee

Date of Birth : January 24, 1986 E-mail : [email protected]

Education

2014. 3. - 2020. 8. Ph.D. in Department of Physics, UNIST

2005. 3. - 2014. 2. B.S in Department of Physics, Kyungbuk National University 2002. 3. - 2005. 2. Daegu High School

Experience

2018. 9. 1. - 2019. 6. 31. Student Researcher : Development, Installation and operation of the Microwave Imaging Reflectometry, Collective Scattering system, Nuclear Fusion Research Institute

2016. 9. 1. - 2018. 9. 01. Participating Researcher : Development of scattering system for turbulence study on KSTAR, Nuclear Fusion Research Institute

2013. 7. - 2013. 8. Intern : Density measurements in KSTAR from emission spectroscopy , Nuclear Fusion Research Institute

Research Interests

1. Development and installation of advanced microwave diagnostics in KSTAR (Electron Cyclotron Emission Imaging, Microwave Imaging Reflectometry, Collective Scattering System)

2. Maintenance and operation of Microwave Imaging Reflectometry, Collective Scattering system in KSTAR

3. Optics design of millimeter wave and sub THz system

4. Laboratory experiments with W-band millimeter wave, sub THz wave and RF components

Publication

1. W. Lee, D.J. Lee, H.K. Park, Y.U. Nam, T.G. Lee, M.J. Choi, H.J Ahn, H.K. Park, Y.S. Na, M.S.

Park, β€œDevelopment of a collective scattering system and its application to the measurement of multiscale fluctuations in KSTAR plasmas”, Plasma Phys. Control. Fusion 63, 035003 (2021)

2. W. Lee, J. Lee, D.J. Lee, H.K. Park, β€œStudy of the origin of quasi-coherent modes in low-density KSTAR ECH plasmas” Nuclear Fusion, 61, 016008 (2020)

3. M. Joung, M. Woo, J.W. Han, S.J. Wang, S.G. Kim, S.H, Hahn, D.J. Lee, J.G. Kwak, R. Ellis,

β€œDesign of ECH launcher for KSTAR advanced Tokamak operation”, Fusion Engineering and Design, 151, 111395 (2020)

4. D.J. Lee, W. Lee, H.K. Park and T.G. Kim, β€œA large-aperture strip-grid beam splitter for partially combined two millimeter-wave diagnostics on Korea Superconducting Tokamak Advanced Research”, Rev. Sci. Instrum. 90, 014703 (2019)

5. W. Lee, J. Leem, D.J. Lee, M.J. Choi, H.K. Park, J.A. Lee, G.S. Yun, T.G. Kim, H. Park, K.W. Kim,

β€œQuasi-coherent fluctuation measurement with the upgraded microwave imaging reflectometer in KSTAR, Plasma Phys. Control. Fusion 60 (2018)

6. Y.B. Nam, D.J. Lee, J. Lee, C. Kim, G.S. Yun, W. Lee and H.K. Park, β€œNew compact and efficient local oscillator optics system for the KSTAR electron cyclotron emission imaging system”, Rev. Sci.

Instrum. 87 (2016)

7. W. Lee, H.K. Park, D.J. Lee, Y.U. Nam, J. Leem and T.K. Kim, β€œDesign of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research”, Rev. Sci. Instrum. 87 (2016)

Academic Activities

1. D.J. Lee, W. Lee, T.G. Lee, M.J. Choi, Y.U. Nam and H.K. Park, β€œCollective scattering system developed for high-k turbulence study in KSTAR”, 14th International Reflectometry Workshop,

Lausanne, Swiss, May 22 – 24, 2019

2. D.J. Lee, W. Lee, T.G. Lee, M.J. Choi, Y.U. Nam and H.K. Park, β€œCommissioning of the collective scattering system developed for high-k turbulence study”, 5th UNIST-kyoto Univ. Workshop, Pusan, Korea, April. 22 – 23, 2019

3. D.J. Lee, W. Lee, T.G. Lee, M.J. Choi, Y.U. Nam and H.K. Park, β€œCommissioning of the collective scattering system developed for electron gyroscale turbulence study”, 2019 KSTAR conference, Seoul, Korea, Feb. 20 – 22, 2019

4. D.J. Lee, W. Lee, H.K. Park, J. Leem and Y.U. Nam, β€œCollective scattering system for high-k turbulence measurement and the modified MIR in KSTAR”, 9th Japan-Korea Seminar on Advanced Diagnostics for Steady-state Fusion Plasmas, Toki-Nagoya, Japan, Aug. 7 – 10, 2018

5. D.J. Lee, W. Lee, H.K. Park, J. Leem and Y.U. Nam, β€œCollective Thomson scattering System and the modified MIR system in KSTAR”, 2018 KSTAR conference, Muju, Korea, Feb. 21 – 23, 2018 6. D.J. Lee, W. Lee, H.K. Park, J. Leem and Y.U. Nam, β€œCollective Thomson Scattering System

combined with the MIR system in KSTAR”, 2017 KPS Fall Meeting, Kyungju, Korea, Oct. 25 – 27, 2017

7. D.J. Lee, W. Lee, H.K. Park, J. Leem, Y.U. Nam, T.K. Kim and H. Park, β€œDesign characteristics of a microwave collective scattering system for KSTAR”, 8th Korea-Japan Workshop on Advanced Diagnostics for Steady-State Fusion Plasmas, Pusan, Korea, Aug. 24 – 27, 2016

8. D.J. Lee, W. Lee, H.K. Park, J. Leem, Y.U. Nam, T.K. Kim and H. Park, β€œDesign characteristics of a microwave collective scattering system for KSTARβ€œ, High-Temperature Plasma Diagnostics, Wisconsin-Madison, US, June 5 – 9, 2016

9. D.J. Lee, W. Lee, H.K. Park, J. Leem, Y.U. Nam, T.K. Kim and H. Park, β€œDesign of a collective scattering system for small scale turbulence study on KSTAR”, KPS 2016 spring meeting, Dageon, Korea, April 20 – 22, 2016

10. D.J. Lee, W. Lee, H.K. Park, J. Leem, Y.U. Nam, T.K. Kim and H. Park, β€œDesign characteristics of the KSTAR collective scattering system for small scale turbulence study”, 2016 KSTAR conference, Dageon, Korea, Jan. 24- 26, 2016

Dokumen terkait