• Tidak ada hasil yang ditemukan

In this thesis, the effective strategy to achieve high performance of OPVs, a combination of NFAs and ternary systems was introduced; It is noteworthy to mention that NFAs permits to achieve high VOC

arise from easily tunable energy levels compared to FAs and improved photon harvesting from complementary absorption is feasible in the ternary blend system. Therefore, photovoltaic application based NFAs and ternary blend systems were carried out and their properties were intensively investigated.

The second chapter deal with a novel ternary blend composed of PTB7-Th, IEICO-4F and two bithiophene core with rhodanine end-groups based NFAs, T2-ORH and T2-OEHRH and their energy conversion electronics; The addition of T2-ORH or T2-OEHRH to the IEICO-4F binary blends did not exhibit a significant beneficial effect on the photovoltaic properties where all the ternary blends achieved ~10% of PCE. Nevertheless, the monotonously enhanced VOCs with increasing T2-ORH or T2-OEHRH contents were observed, the reason would be the remarkably lower LUMO of IEICO-4F (4.19 eV) than that of T2-ORH (3.59 eV) and T2-OEHRH (3.58 eV). It is evident that the working principle of the ternary OPVs is likely to show alloy-like behavior. Although there were no improvements on the photovoltaic properties, the coloration of the blend film was easily implemented including cyan blue purple reddish purple colors by modulating the ratios of IEICO-4F:T2- ORH or IEICO-4F:T2-OEHRH with PTB7-Th. It is because PTB7-Th and IEICO-4F are narrow band gap and two NFAs are ultra-wide ban gap materials, respectively. Furthermore, the color difference was optically characterized through transmission measurements, originated from transmission of different bands of light in the visible spectrum. The ranges of colors were quantified using the CIE chromaticity system and the CIELAB color space coordinates. The color transition is clearly correlated with the component ratio of IEICO-4F:T2-ORH or :T2-OEHRH. The CIELAB results further revealed more negative b* values in T2-ORH than T2-OEHRH binary systems, i.e., more reddish hues can be demonstrated using T2-OEHRH. It is additionally observed that the color calculation through the RGB model is good agreement with the CIE and the CIELAB results.

It is obvious that such multi-component system shows versatile properties as well as provides opportunity to achieve high performance of OPVs. However, exploring numerous possible material combinations and manufacturing toward labtofab translation are challenging and time-consuming.

The situation demands a novel research method which can rapidly explore the enormous parameter space via industry-relevant methods.

In this perspective, the last chapter introduced a new digital research methodology, the R2R process as a high-throughput in-situ formulation screening tool to combine with ML technology. PM6:Y6:IT-

111

4F, one of high-performance NFA-based ternary combination, was selected to utilize the methodology.

UV-vis measurement with assistance of AFM analysis was conducted as an evidence of in-situ formulation fabrication and confirmed qualitative changes were observed depending on the material composition. The consistent 2218 OPV devices using the high-throughput fabrication system were then fabricated to produce training data for ML technology. The deposition parameters, absolute amounts of each component and total solid per unit area (DD and TDD), were introduced and cover thicknesses of device and ratio between components. The compositions and the deposition parameters were thoroughly studied and the performance trends depending on the parameters were clearly observed. The PCE data of the 2218 devices were used as training data with the DDs, as a reusable feature of OPVs. Among a variety of ML algorithms to build model, RF regression algorithm was chosen because it exhibited the remarkable model performance metrics in the hold-out validation process (R2 = 0.996 for training and R2 = 0.967 for testing set). The RF regression-based model was used to predict two formulations, BPF (1:1.215:0.165, w/w) and BEF (1:1.08:0.27, w/w). The experimental validations were also conducted and clearly indicated BPF which is necessary in the industrial printing process exhibited higher tolerance to the thickness variation compared to BEF. Furthermore, BEF showed up to 10.2% PCE at the predicted thickness range whereas BPF showed the inferior photovoltaic performance. It is noted that the efficiency of BEF is the highest PCE among the reported R2R processed OPVs so far and it is achieved without using problematic solvent additives, as a result, the intact stability can be expected.

To the best of our knowledge, this work is the first ML-assisted OPV study based on the consistent experimental datasets and demonstrates the true potential of ML-assisted research for OPVs. We believe such a digital transformation of OPV research would lead to the breakthrough toward commercialization.

112

113

References

(1) 7 Impressive Solar Energy Facts (+ Charts). https://www.abb-conversations.com/2013/12/7- impressive-solar-energy-facts-charts (accessed Oct 16, 2020).

(2) Renewables 2011 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2011; p. 15. https://www.ren21.net/wp-content/uploads/2019/05/GSR2011_Full- Report_English.pdf (accessed Oct 16, 2020).

(3) Renewables 2012 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2012; p. 17. https://www.ren21.net/wp-content/uploads/2019/05/GSR2012_Full- Report_English.pdf (accessed Oct 16, 2020).

(4) Renewables 2013 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2013; p. 14. https://www.ren21.net/wp-content/uploads/2019/05/GSR2013_Full- Report_English.pdf (accessed Oct 16, 2020).

(5) Renewables 2014 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2014; p. 8. https://www.ren21.net/wp-content/uploads/2019/05/GSR2014_Key- Findings_English.pdf (accessed Oct 16, 2020).

(6) Renewables 2015 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2015; p. 19. https://www.ren21.net/wp-content/uploads/2019/05/GSR2015_Full- Report_English.pdf (accessed Oct 16, 2020).

(7) Renewables 2016 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2016; p. 19.https://www.ren21.net/wp-

content/uploads/2019/05/REN21_GSR2016_FullReport_en_11.pdf (accessed Oct 16, 2020).

(8) Renewables 2017 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2017; p. 21. https://www.ren21.net/wp-content/uploads/2019/05/GSR2017_Full- Report_English.pdf (accessed Oct 16, 2020).

(9) Renewables 2018 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2018; p. 19. https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf (accessed Oct 16, 2020).

(10) Renewables 2019 Global Status Report. Renewable Energy Policy Network for the 21th Century:

France, 2019; p. 19. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf (accessed Oct 16, 2020).

(11) Bp Statistical Review of World Energy 2020. Whitehouse Associates: United of Kingdom, 2020;

pp. 8, 22, 37, 47, 50, 51, 53. https://www.bp.com/content/dam/bp/business-

sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full- report.pdf (accessed Oct 16, 2020).

114

(12) Einstein, A., Þber Einen Die Erzeugung Und Verwandlung Des Lichtes Betreffenden Heuristischen Gesichtspunkt. Ann. Phys. 1905, 322, 132–148.

(13) History of Solar Energy: Who Invented Solar Panels? https://www.vivintsolar.com/learning- center/history-of-solar-energy (accessed Oct 17, 2020).

(14) Tang, C. W., Two‐Layer Organic Photovoltaic Cell. Appl. Phys. Lett. 1986, 48, 183–185.

(15) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, 1474–1476.

(16) Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.;

Yan, H., Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells. Nat. Commun. 2014, 5, 5293.

(17) He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y., Single-Junction Polymer Solar Cells with High Efficiency and Photovoltage. Nat. Photonics 2015, 9, 174–179.

(18) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H., Efficient Organic Solar Cells Processed from Hydrocarbon Solvents. Nat. Energy 2016, 1, 15027.

(19) Dittmer, J. J.; Marseglia, E. A.; Friend, R. H., Electron Trapping in Dye/Polymer Blend Photovoltaic Cells. Adv. Mater. 2000, 12, 1270–1274.

(20) Koetse, M. M.; Sweelssen, J.; Hoekerd, K. T.; Schoo, H. F. M.; Veenstra, S. C.; Kroon, J. M.; Yang, X.; Loos, J., Efficient Polymer:Polymer Bulk Heterojunction Solar Cells. Appl. Phys.

Lett. 2006, 88, 083504.

(21) Zhan, X.; Tan, Z. a.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.;

Kippelen, B.; Marder, S. R., A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells. J. Am. Chem. Soc. 2007, 129, 7246–

7247.

(22) Ren, G.; Ahmed, E.; Jenekhe, S. A., Non-Fullerene Acceptor-Based Bulk Heterojunction Polymer Solar Cells: Engineering the Nanomorphology via Processing Additives. Adv. Energy Mater.

2011, 1, 946–953.

(23) Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J., Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28, 4734–4739.

(24) Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C.-S.;

Yang, Y., Vertical Phase Separation in Poly(3-Hexylthiophene): Fullerene Derivative Blends and Its Advantage for Inverted Structure Solar Cells. Adv. Funct. Mater. 2009, 19, 1227–1234.

(25) Yan, Y.; Liu, X.; Wang, T., Conjugated-Polymer Blends for Organic Photovoltaics: Rational Control of Vertical Stratification for High Performance. Adv. Mater. 2017, 29, 1601674.

(26) Standard Solar Spectra. https://www.pveducation.org/pvcdrom/appendices/standard-solar-

115 spectra (accessed Oct 19, 2020).

(27) Reference Air Mass 1.5 Spectra. https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed Oct 19, 2020).

(28) Dittrich, T., Materials Concepts for Solar Cells. World Scientific Publishing Europe Ltd: United of Kingdoms, 2014; p 16.

(29) Yun, M. H. Investigation of Energy Harvesting Materials for Organic and Hybrid Solar Cells.

Ulsan : Graduate School of UNIST, Ulsan, 2016.

(30) Cho, H. W.; An, N. G.; Park, S. Y.; Shin, Y. S.; Lee, W.; Kim, J. Y.; Song, S., Thermally Durable Nonfullerene Acceptor with Nonplanar Conjugated Backbone for High- Performance Organic Solar Cells. Adv. Energy Mater. 2020, 10, 1903585.

(31) Min, J.; Jiao, X.; Ata, I.; Osvet, A.; Ameri, T.; Bäuerle, P.; Ade, H.; Brabec, C. J., Time-Dependent Morphology Evolution of Solution-Processed Small Molecule Solar Cells During Solvent Vapor Annealing. Adv. Energy Mater. 2016, 6, 1502579.

(32) Kim, Y.; Yeom, H. R.; Kim, J. Y.; Yang, C., High-Efficiency Polymer Solar Cells with a Cost-Effective Quinoxaline Polymer through Nanoscale Morphology Control Induced by Practical Processing Additives. Energy Environ. Sci. 2013, 6, 1909–1916.

(33) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C., Efficiency Enhancement in Low-Bandgap Polymer Solar Cells by Processing with Alkane Dithiols. Nat.

Mater. 2007, 6, 497–500.

(34) Choi, H.; Park, J. S.; Jeong, E.; Kim, G.-H.; Lee, B. R.; Kim, S. O.; Song, M. H.;

Woo, H. Y.; Kim, J. Y., Combination of Titanium Oxide and a Conjugated Polyelectrolyte for High- Performance Inverted-Type Organic Optoelectronic Devices. Adv. Mater. 2011, 23, 2759–2763.

(35) Choi, H.; Ko, S.-J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J.-W.; Choi, H. J.;

Cha, M.; Jeong, J.-R.; Hwang, I.-W.; Song, M. H.; Kim, B.-S.; Kim, J. Y., Versatile Surface Plasmon Resonance of Carbon-Dot-Supported Silver Nanoparticles in Polymer Optoelectronic Devices.

Nat. Photonics 2013, 7, 732–738.

(36) Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X., An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174.

(37) Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J., Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–

7151.

(38) Baran, D.; Kirchartz, T.; Wheeler, S.; Dimitrov, S.; Abdelsamie, M.; Gorman, J.;

Ashraf, R. S.; Holliday, S.; Wadsworth, A.; Gasparini, N.; Kaienburg, P.; Yan, H.;

Amassian, A.; Brabec, C. J.; Durrant, J. R.; McCulloch, I., Reduced Voltage Losses Yield 10%

Efficient Fullerene Free Organic Solar Cells with >1 V Open Circuit Voltages. Energy Environ. Sci.

2016, 9, 3783–3793.

116

(39) Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H., Fast Charge Separation in a Non-Fullerene Organic Solar Cell with a Small Driving Force. Nat. Energy 2016, 1, 16089.

(40) Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J., Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap. Angew.

Chem., Int. Ed. 2017, 56, 3045–3049.

(41) Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.;

Tan, C.-H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; Alamoudi, M.; Laquai, F.; Brabec, C.

J.; Salleo, A.; Durrant, J. R.; McCulloch, I., High-Efficiency and Air-Stable P3HT-Based Polymer Solar Cells with a New Non-Fullerene Acceptor. Nat. Commun. 2016, 7, 11585.

(42) Gasparini, N.; Salvador, M.; Strohm, S.; Heumueller, T.; Levchuk, I.; Wadsworth, A.;

Bannock, J. H.; de Mello, J. C.; Egelhaaf, H.-J.; Baran, D.; McCulloch, I.; Brabec, C. J., Burn- in Free Nonfullerene-Based Organic Solar Cells. Adv. Energy Mater. 2017, 7, 1700770.

(43) Cha, H.; Wu, J.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.;

Wyatt, M. F.; Baran, D.; Kim, J.-S.; McCulloch, I.; Durrant, J. R., An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. Adv. Mater. 2017, 29, 1701156.

(44) Chen, S.; Zhang, G.; Liu, J.; Yao, H.; Zhang, J.; Ma, T.; Li, Z.; Yan, H., An All- Solution Processed Recombination Layer with Mild Post-Treatment Enabling Efficient Homo-Tandem Non-Fullerene Organic Solar Cells. Adv. Mater. 2017, 29, 1604231.

(45) Lu, L.; Kelly, M. A.; You, W.; Yu, L., Status and Prospects for Ternary Organic Photovoltaics. Nat. Photonics 2015, 9, 491–500.

(46) Wu, W., Inorganic Nanomaterials for Printed Electronics: A Review. Nanoscale 2017, 9, 7342–

7372.

(47) Krebs, F. C., Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.

(48) Williams, B. Roll-to-Roll Processing: The Basics. https://www.montalvo.com/article- library/roll-to-roll-processing-basics (accessed Nov 04, 2020).

(49) Russell, S. J.; Norvig, P., Artificial Intelligence: A Modern Approach. Prentice Hall: United States of America, 2009; pp 1–2.

(50) Samuel, A. L., Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res.

Dev. 1959, 3, 210–229.

(51) Mitchell, T., Machine Learning. McGraw-Hill Science: United States of America, 1997; p 2.

(52) Werbos, P. J. In Applications of Advances in Nonlinear Sensitivity Analysis, Berlin, Heidelberg, Springer Berlin Heidelberg: Berlin, Heidelberg, 1982; pp 762–770.

(53) Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G.;

Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;

117

Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.;

Graepel, T.; Hassabis, D., Mastering the Game of Go with Deep Neural Networks and Tree Search.

Nature 2016, 529, 484–489.

(54) Why Use Validation Sets in Machine Learning. https://3months.tistory.com/118 (accessed Sep 03, 2020).

(55) Kim, E., Introduction to Artificial Intelligence, Machine Learning, and Deep Learning with Algorithms. Wikibook: South Korea, 2016; pp 126–127.

(56) Understanding Linear Regression.

https://godongyoung.github.io/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D/2018/01/

20/ISL-linear-regression_ch3.html (accessed Oct 06, 2020).

(57) What Is Random Forest?: Pros and Cons. https://process-mining.tistory.com/102 (accessed Sep 19, 2020).

(58) Sahu, H.; Rao, W.; Troisi, A.; Ma, H., Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors. Adv. Energy Mater. 2018, 8, 1801032.

(59) Koehrsen, W. Hyperparameter Tuning the Random Forest in Python.

https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit- learn-28d2aa77dd74 (accessed Sep 19, 2020).

(60) Kim, E., Introduction to Artificial Intelligence, Machine Learning, and Deep Learning with Algorithms. Wikibook: South Korea, 2016; pp 151–154.

(61) Kim, E., Introduction to Artificial Intelligence, Machine Learning, and Deep Learning with Algorithms. Wikibook: South Korea, 2016; pp 154–158.

(62) Kim, E., Introduction to Artificial Intelligence, Machine Learning, and Deep Learning with Algorithms. Wikibook: South Korea, 2016; p 169.

(63) Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning. MIT Press: 2016.

(64) CNN: Back-Propagation

http://courses.cs.tau.ac.il/Caffe_workshop/Bootcamp/pdf_lectures/Lecture%203%20CNN%20-%20ba ckpropagation.pdf

(65) Chun, S. Machine Learning Study (18) Neural Network Introduction.

http://sanghyukchun.github.io/74 (accessed Nov 03, 2020).

(66) Carbonell, J. G.; Michalski, R. S.; Mitchell, T. M., Machine Learning: A Historical and Methodological Analysis. AI Magazine 1983, 4, 69.

(67) Schmidhuber, J., Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–

117.

(68) McCombes, S. An Introduction to Sampling Methods.

https://www.scribbr.com/methodology/sampling-methods (accessed Oct 10, 2020).

(69) Estimating Model Performance to Validate Dataset (Holdout, K-Fold, Train, Validation, Test

118

Set, Confusion Matrix). https://m.blog.naver.com/sjc02183/221739648990 (accessed Oct 14, 2020).

(70) Introduction to K-Fold Cross Validation. https://nonmeyet.tistory.com/entry/KFold-Cross- Validation%EA%B5%90%EC%B0%A8%EA%B2%80%EC%A6%9D-%EC%A0%95%EC%9D%98 -%EB%B0%8F-%EC%84%A4%EB%AA%85 (accessed Oct 13, 2020).

(71) How to Avoid Over-Fitting? (Training Vs. Validation Vs. Test Set).

https://rfriend.tistory.com/188 (accessed Oct 13, 2020).

(72) Validation of Model Reliability: Mape (Mean Absolute Percentage Error).

https://m.blog.naver.com/PostView.nhn?blogId=limitsinx&logNo=221578145366&proxyReferer=htt ps:%2F%2Fwww.google.com%2F (accessed Oct 13, 2020).

(73) Jo, S., Deep Learning for Everyone. Gilbut: South Korea, 2017; pp 39–40.

(74) Kim, E., Introduction to Artificial Intelligence, Machine Learning, and Deep Learning with Algorithms. Wikibook: South Korea, 2016; p 93.

(75) Alexander, D. L. J.; Tropsha, A.; Winkler, D. A., Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. J. Chem. Inf. Model. 2015, 55, 1316–1322.

(76) Powers, D. M. W., Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Tech. 2011, 2, 37–63.

(77) Madhavan, P. G., A New Recurrent Neural Network Learning Algorithm for Time Series Prediction. J. Intell. Syst. 1997, 7, 103.

(78) Machine Learning 102: Practical Advice. https://ogrisel.github.io/scikit-learn.org/sklearn- tutorial/tutorial/astronomy/practical.html (accessed Oct 16, 2020).

(79) Meek, C.; Thiesson, B.; Heckerman, D., The Learning-Curve Sampling Method Applied to Model-Based Clustering. J. Mach. Learn. Res. 2002, 2, 397–418.

(80) Sammut, C.; Webb, G. I., Encyclopedia of Machine Learning and Data Mining. Springer:

United States of America, 2011; p 578.

(81) Elliott, T. The State of the Octoverse: Machine Learning. https://github.blog/2019-01-24-the- state-of-the-octoverse-machine-learning (accessed Oct 14, 2020).

(82) Lee, J. Python.

https://terms.naver.com/entry.nhn?docId=3580815&cid=59088&categoryId=59096 (accessed Oct 14, 2020).

(83) Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S., Ultrathin and Lightweight Organic Solar Cells with High Flexibility. Nat. Commun.

2012, 3, 770.

(84) Liu, Y.; Qi, N.; Song, T.; Jia, M.; Xia, Z.; Yuan, Z.; Yuan, W.; Zhang, K.-Q.; Sun, B., Highly Flexible and Lightweight Organic Solar Cells on Biocompatible Silk Fibroin. ACS Appl.

Mater. Interfaces 2014, 6, 20670–20675.

119

(85) Wan, J.; Fan, X.; Huang, H.; Wang, J.; Zhang, Z.; Fang, J.; Yan, F., Metal Oxide-Free Flexible Organic Solar Cells with 0.1 M Perchloric Acid Sprayed Polymeric Anodes. J. Mater. Chem.

A 2020, 8, 21007–21015.

(86) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A.

J., Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science 2007, 317, 222–225.

(87) Song, W.; Fan, X.; Xu, B.; Yan, F.; Cui, H.; Wei, Q.; Peng, R.; Hong, L.; Huang, J.; Ge, Z., All-Solution-Processed Metal-Oxide-Free Flexible Organic Solar Cells with over 10%

Efficiency. Adv. Mater. 2018, 30, 1800075.

(88) Sun, R.; Guo, J.; Sun, C.; Wang, T.; Luo, Z.; Zhang, Z.; Jiao, X.; Tang, W.;

Yang, C.; Li, Y.; Min, J., A Universal Layer-by-Layer Solution-Processing Approach for Efficient Non-Fullerene Organic Solar Cells. Energy Environ. Sci. 2019, 12, 384–395.

(89) Han, Y. W.; Jeon, S. J.; Lee, H. S.; Park, H.; Kim, K. S.; Lee, H.-W.; Moon, D. K., Evaporation-Free Nonfullerene Flexible Organic Solar Cell Modules Manufactured by an All-Solution Process. Adv. Energy Mater. 2019, 9, 1902065.

(90) Colsmann, A.; Puetz, A.; Bauer, A.; Hanisch, J.; Ahlswede, E.; Lemmer, U., Efficient Semi-Transparent Organic Solar Cells with Good Transparency Color Perception and Rendering Properties. Adv. Energy Mater. 2011, 1, 599–603.

(91) Guo, F.; Zhu, X.; Forberich, K.; Krantz, J.; Stubhan, T.; Salinas, M.; Halik, M.;

Spallek, S.; Butz, B.; Spiecker, E.; Ameri, T.; Li, N.; Kubis, P.; Guldi, D. M.; Matt, G. J.;

Brabec, C. J., ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors. Adv. Energy Mater. 2013, 3, 1062–1067.

(92) Ravishankar, E.; Booth, R. E.; Saravitz, C.; Sederoff, H.; Ade, H. W.; O’Connor, B. T., Achieving Net Zero Energy Greenhouses by Integrating Semitransparent Organic Solar Cells. Joule 2020, 4, 490–506.

(93) Xie, Y.; Cai, Y.; Zhu, L.; Xia, R.; Ye, L.; Feng, X.; Yip, H.-L.; Liu, F.; Lu, G.;

Tan, S.; Sun, Y., Fibril Network Strategy Enables High-Performance Semitransparent Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2002181.

(94) Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.;

Yip, H.-L.; Chen, H.; Li, C.-Z., High-Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See-through Functions. Adv. Mater. 2020, 32, 2001621.

(95) Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F., A Critical Review on Semitransparent Organic Solar Cells. Nano Energy 2020, 78, 105376.

(96) Ye, L.; Zhang, S.; Zhao, W.; Yao, H.; Hou, J., Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chem. Mater. 2014, 26, 3603–3605.

120

(97) Zhao, J.; Li, Y.; Lin, H.; Liu, Y.; Jiang, K.; Mu, C.; Ma, T.; Lin Lai, J. Y.; Hu, H.; Yu, D.; Yan, H., High-Efficiency Non-Fullerene Organic Solar Cells Enabled by a Difluorobenzothiadiazole-Based Donor Polymer Combined with a Properly Matched Small Molecule Acceptor. Energy Environ. Sci. 2015, 8, 520–525.

(98) Yi, J.; Wang, Y.; Luo, Q.; Lin, Y.; Tan, H.; Wang, H.; Ma, C.-Q., A 9,9′-Spirobi[9h- Fluorene]-Cored Perylenediimide Derivative and Its Application in Organic Solar Cells as a Non- Fullerene Acceptor. Chem. Commun. 2016, 52, 1649–1652.

(99) Zhong, L.; Gao, L.; Bin, H.; Hu, Q.; Zhang, Z.-G.; Liu, F.; Russell, T. P.; Zhang, Z.; Li, Y., High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. Adv. Energy Mater. 2017, 7, 1602215.

(100) Chen, K.-S.; Salinas, J.-F.; Yip, H.-L.; Huo, L.; Hou, J.; Jen, A. K. Y., Semi-Transparent Polymer Solar Cells with 6% PCE, 25% Average Visible Transmittance and a Color Rendering Index Close to 100 for Power Generating Window Applications. Energy Environ. Sci. 2012, 5, 9551–9557.

(101) Chueh, C.-C.; Chien, S.-C.; Yip, H.-L.; Salinas, J. F.; Li, C.-Z.; Chen, K.-S.; Chen, F.-C.; Chen, W.-C.; Jen, A. K.-Y., Toward High-Performance Semi-Transparent Polymer Solar Cells:

Optimization of Ultra-Thin Light Absorbing Layer and Transparent Cathode Architecture. Adv. Energy Mater. 2013, 3, 417–423.

(102) Betancur, R.; Romero-Gomez, P.; Martinez-Otero, A.; Elias, X.; Maymó, M.; Martorell, J., Transparent Polymer Solar Cells Employing a Layered Light-Trapping Architecture. Nat. Photonics 2013, 7, 995–1000.

(103) Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.;

Baran, D.; McCulloch, I., Critical Review of the Molecular Design Progress in Non-Fullerene Electron Acceptors Towards Commercially Viable Organic Solar Cells. Chem. Soc. Rev. 2019, 48, 1596–1625.

(104) Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X., Non- Fullerene Acceptors for Organic Solar Cells. Nat. Rev. Mater. 2018, 3, 18003.

(105) Zhang, J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H., Material Insights and Challenges for Non-Fullerene Organic Solar Cells Based on Small Molecular Acceptors. Nat. Energy 2018, 3, 720–

731.

(106) Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.;

Sun, K.; Yang, S.; Zhang, X.; Ding, L., 18% Efficiency Organic Solar Cells. Sci. Bull. 2020, 65, 272–275.

(107) Wang, W.; Yan, C.; Lau, T.-K.; Wang, J.; Liu, K.; Fan, Y.; Lu, X.; Zhan, X., Fused Hexacyclic Nonfullerene Acceptor with Strong Near-Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Adv. Mater. 2017, 29, 1701308.

(108) Upama, M. B.; Wright, M.; Elumalai, N. K.; Mahmud, M. A.; Wang, D.; Xu, C.;

Uddin, A., High-Efficiency Semitransparent Organic Solar Cells with Non-Fullerene Acceptor for