• Tidak ada hasil yang ditemukan

CHAPTER 7. Summary

7.1. Summary

This thesis presents effective approaches to developing dimension-engineered quasi-2D blue emissive perovskite materials and overcoming the lagged efficiency of blue emissive PeLEDs. The inherent multiple-quantum well structure i.e., assembly of quasi-2D perovskite phases endows them with outstanding optical properties such as bandgap tunability, high exciton binding energy, and high PLQY under a low excitation intensity. Therefore, the modulation of 2D phases for efficient quasi-2D perovskite materials having an ideal energy landscape, optimal phase distribution, and favorable orientation, can realize efficient and stable blue PeLEDs.

In chapter 2, an effective interfacial engineering strategy was introduced to guide the formation of well-grown 2D perovskite phases and minimize the detrimental chemical damage from the highly acidic PEDOT:PSS substrate. Zwitterion additive, L-phenylalanine contains carboxylate and ammonium functionalities that buffer the acidity of PEDOT:PSS and are able to coordinate to uncoordinated Pb2+

in the overlying perovskite layer, was incorporated into the PEDOT:PSS. The bidentate coordination between additive and uncoordinated Pb2+ facilitates the growth of 2D perovskite phases and even thoroughly passivates the interfacial defect states. Moreover, attenuated acidity of the PEDOT:PSS suppresses the chemical etching of ITO substrates, reducing exciton quenching pathways. Finally, we realized efficient and stable sky-blue emissive PeLEDs with a peak EQE of 10.98% at 480 nm by blocking energy loss due to defect states through and designing an ideal energy landscape.

In chapter 3, a multifunctional passivating molecule of 36ClCzEPA, containing the electron- withdrawing chlorine atom and the phosphonic acid as a functional and anchoring group was introduced as an alternative to the highly acidic PEDOT:PSS HIL. It was observed that this molecule formed a SAM on the ITO substrate, altering the electronic structure of the ITO electrode with significantly increased WF. Strongly chemisorbed neutral SAM inhibited the chemical etching of ITO and perovskite emissive layer, leading to the suppression of exciton quenching pathways. Besides, the incorporated chlorine atom induced an orbital coupling with the interfacial uncoordinated Pb2+detect state as well as a strong interfacial dipole, passivating them and thereby resulting in a hypsochromically shifted optical properties of the perovskite layer. Finally, due to these synergetic effects originating from a well- designed SAM molecule, we realized efficient pure-blue emissive PeLEDs with a maximum luminance of 1253 cd m–2and a peak EQE of 4.80% at 473 nm.

120

In chapter 4, the effect of the surface polarity of the underlying HIL on the crystallization dynamics of 2D perovskite phases was thoroughly studied, and optimized the surface polarity to realize the optimal substrate for efficient pure-blue emissive PeLEDs. Three different additives, L-phenylalanine, L-tyrosine, and L-dopa as surface-modifying agents were incorporated into the PEDOT:PSS. It was confirmed that the additive, L-dopa involving hydroxyl groups coordinate chemical bonding with the sulfonate group of PSS moieties, leading to a higher surface polarity for the PEDOT:PSS substrate. On that substrate, the formation of higher-n2D perovskite phases was thermodynamically unfavorable due to the smaller formation energy, and lower-n-dominated phase distribution induced a hypsochromically shift in the luminescence spectrum. Finally, to obtain the optimal substrate for efficient pure-blue emissive PeLEDs, we controlled the dual additives with L-phenylalanine which provide a well-matched electronic band structure, boosting the performance of pure-blue emissive PeLEDs with a maximum EQE of 5.57% at 472 nm.

In chapter 5, a facile halide and phase modulating approach to design an ideal energy-transfer tunnel structure with flawless quasi-2D perovskites was introduced. This post-treatment entails the halide- exchange reaction with the assistance of haloalkane molecules and strong nucleophile molecules. The detached chlorides from the haloalkane molecule spontaneously exchanged with bromides in perovskites and further intrude the chlorine vacant sites, resulting in efficient PL and color stability.

Furthermore, the spontaneous phase rearrangement occurred via merging between neighboring low-n 2D phases to higher-n2D phases. It modulated the landscape of the energy-transfer funnel to have the narrowed 2D phase distribution, minimizing the detrimental exciton losses through the streamlined energy transfer. Finally, we realized efficient deep-blue emissive PeLEDs with a maximum EQE of 4.97% at 470 nm due to all synergetic effects from the proposed halide and phase rearrange treatment.

In chapter 6, a facile halide post-treatment was also introduced to realize efficient bulk blue emissive perovskite films. The halide compositions of bulk perovskite films were finely controlled for the desired emission colors. This spontaneous halide exchange process induced the recrystallization of rough perovskite surface, providing a fully covered and smooth perovskite film. Finally, we realized highly luminescent blue emissive bulk PeLEDs with maximum luminance of 1468 and 495 cd m–2at 490 and 470 nm, respectively. Also, this post-treatment resulted in long operating lifetimes of 7.74 and 3.06 min under a high-level of current injection (~20 mA cm–2) without halide segregation.

Overall, we systemically introduced quasi-2D perovskite materials and developed strategic approaches for realizing efficient and stable blue PeLEDs. Since most of the outstanding optical and photophysical properties of quasi-2D perovskite materials could be determined by the assembly of 2D perovskite phases, the modulation of 2D phases is essential for idealized blue emissive quasi-2D perovskite materials and their device applications. Our suggested approaches, we believe, would provide a versatile avenue to improving the efficiency of blue PeLEDs, bringing the field a step closer to practical and commercial applications.

121

References

(1) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016,28(1), 284–292.

(2) Han, G.; Hadi, H. D.; Bruno, A.; Kulkarni, S. A.; Koh, T. M.; Wong, L. H.; Soci, C.; Mathews, N.; Zhang, S.; Mhaisalkar, S. G. Additive Selection Strategy for High Performance Perovskite Photovoltaics. J. Phys. Chem. C 2018,122(25), 13884–13893.

(3) Ünlü, F.; Jung, E.; Haddad, J.; Kulkarni, A.; Öz, S.; Choi, H.; Fischer, T.; Chakraborty, S.;

Kirchartz, T.; Mathur, S. Understanding the Interplay of Stability and Efficiency in A-site Engineered Lead Halide Perovskites. APL Mater. 2020,8(7), 070901.

(4) Goesten, M. G.; Hoffmann, R. Mirrors of Bonding in Metal Halide Perovskites. J. Am. Chem.

Soc. 2018,140(40), 12996–13010.

(5) Jin, H.; Debroye, E.; Keshavarz, M.; Scheblykin, I. G.; Roeffaers, M. B. J.; Hofkens, J.; Steele, J. A. It's a Trap! On the Nature of Localised States and Charge Trapping in Lead Halide Perovskites. Mater. Horizons 2020,7(2), 397–410.

(6) Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L.-W.; Alivisatos, A. P. Design Principles for Trap-Free CsPbX3 Nanocrystals:

Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. J. Am. Chem.

Soc. 2018,140(50), 17760–17772.

(7) De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014,5(6), 1035–1039.

(8) Bokdam, M.; Sander, T.; Stroppa, A.; Picozzi, S.; Sarma, D. D.; Franchini, C.; Kresse, G. Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites. Sci. Rep. 2016,6(1), 28618.

(9) Kim, Y.-H.; Cho, H.; Lee, T.-W. Metal Halide Perovskite Light Emitters. Proc. Natl. Acad. Sci.

U.S.A. 2016,113(42), 11694–11702.

(10) Fakharuddin, A.; Gangishetty, M. K.; Abdi-Jalebi, M.; Chin, S.-H.; bin Mohd Yusoff, A. R.;

Congreve, D. N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H. J. Perovskite Light- Emitting Diodes. Nat. Electron. 2022,5(4), 203–216.

(11) Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L. Z.;

Gödel, K. C.; Bein, T.; Docampo, P.; Dutton, S. E.; De Volder, M. F. L.; Friend, R. H. Blue- Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015,15(9), 6095–6101.

122

(12) Li, G.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Peña, F.; Hou, S.;

Ducati, C.; Gao, F.; Friend, R. H.; Greenham, N. C.; Tan, Z.-K. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater.

2016,28(18), 3528–3534.

(13) Yoon, Y. J.; Shin, Y. S.; Jang, H.; Son, J. G.; Kim, J. W.; Park, C. B.; Yuk, D.; Seo, J.; Kim, G.- H.; Kim, J. Y. Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method.

Nano Lett. 2021,21(8), 3473–3479.

(14) Hoye, R. L. Z.; Lai, M.-L.; Anaya, M.; Tong, Y.; Gałkowski, K.; Doherty, T.; Li, W.; Huq, T. N.;

Mackowski, S.; Polavarapu, L.; Feldmann, J.; MacManus-Driscoll, J. L.; Friend, R. H.; Urban, A. S.; Stranks, S. D. Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes. ACS Energy Lett. 2019,4(5), 1181–1188.

(15) Xiao, X.; Wang, K.; Ye, T.; Cai, R.; Ren, Z.; Wu, D.; Qu, X.; Sun, J.; Ding, S.; Sun, X. W.; Choy, W. C. H. Enhanced Hole Injection Assisted by Electric Dipoles for Efficient Perovskite Light- Emitting Diodes. Commun. Mater. 2020,1(1), 81.

(16) Weng, S.; Yu, G.; Zhou, C.; Lin, F.; Han, Y.; Wang, H.; Huang, X.; Liu, X.; Hu, H.; Liu, W.;

Wang, Y.; Lin, H. Challenges and Opportunities for the Blue Perovskite Quantum Dot Light- Emitting Diodes.Crystals2022, 12(7), 929.

(17) Zhang, L.; Sun, C.; He, T.; Jiang, Y.; Wei, J.; Huang, Y.; Yuan, M. High-Performance Quasi-2D Perovskite Light-Emitting Diodes: From Materials to Devices. Light Sci. Appl. 2021,10(1), 61.

(18) Fu, P.; Liu, Y.; Yu, S.; Yin, H.; Yang, B.; Ahmad, S.; Guo, X.; Li, C. Dion-Jacobson and Ruddlesden-Popper Double-Phase 2D Perovskites for Solar Cells. Nano Energy 2021, 88, 106249.

(19) Ge, C.; Xue, Y. Z. B.; Li, L.; Tang, B.; Hu, H. Recent Progress in 2D/3D Multidimensional Metal Halide Perovskites Solar Cells.Front. Mater.2020,7, 601179.

(20) Niu, T.; Xue, Q.; Yip, H.-L. Advances in Dion-Jacobson Phase Two-Dimensional Metal Halide Perovskite Solar Cells.Nanophotonics2021,10(8), 2069–2102.

(21) Blancon, J. C.; Stier, A. V.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Traoré, B.; Pedesseau, L.;

Kepenekian, M.; Katsutani, F.; Noe, G. T.; Kono, J.; Tretiak, S.; Crooker, S. A.; Katan, C.;

Kanatzidis, M. G.; Crochet, J. J.; Even, J.; Mohite, A. D. Scaling Law for Excitons in 2D Perovskite Quantum Wells. Nat. Commun. 2018,9(1), 2254.

(22) Panuganti, S.; Besteiro, L. V.; Vasileiadou, E. S.; Hoffman, J. M.; Govorov, A. O.; Gray, S. K.;

Kanatzidis, M. G.; Schaller, R. D. Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. J. Am. Chem. Soc.

2021,143(11), 4244–4252.

(23) Quan, L. N.; Zhao, Y.; García de Arquer, F. P.; Sabatini, R.; Walters, G.; Voznyy, O.; Comin, R.;

123

Li, Y.; Fan, J. Z.; Tan, H.; Pan, J.; Yuan, M.; Bakr, O. M.; Lu, Z.; Kim, D. H.; Sargent, E. H.

Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Lett. 2017,17(6), 3701–3709.

(24) Sun, Q.; Zhao, C.; Yin, Z.; Wang, S.; Leng, J.; Tian, W.; Jin, S. Ultrafast and High-Yield Polaronic Exciton Dissociation in Two-Dimensional Perovskites. J. Am. Chem. Soc. 2021,143 (45), 19128–19136.

(25) Pang, P.; Jin, G.; Liang, C.; Wang, B.; Xiang, W.; Zhang, D.; Xu, J.; Hong, W.; Xiao, Z.; Wang, L.; Xing, G.; Chen, J.; Ma, D. Rearranging Low-Dimensional Phase Distribution of Quasi-2D Perovskites for Efficient Sky-Blue Perovskite Light-Emitting Diodes. ACS Nano 2020,14(9), 11420–11430.

(26) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.;

Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H.

Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol.

2014,9(9), 687–692.

(27) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R.

X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X

= Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015,15(6), 3692–3696.

(28) Yoon, Y. J.; Lee, K. T.; Lee, T. K.; Kim, S. H.; Shin, Y. S.; Walker, B.; Park, S. Y.; Heo, J.; Lee, J.; Kwak, S. K.; Kim, G.-H.; Kim, J. Y. Reversible, Full-Color Luminescence by Post-Treatment of Perovskite Nanocrystals. Joule 2018,2(10), 2105–2116.

(29) Xu, W.; Hu, Q.; Bai, S.; Bao, C.; Miao, Y.; Yuan, Z.; Borzda, T.; Barker, A. J.; Tyukalova, E.;

Hu, Z.; Kawecki, M.; Wang, H.; Yan, Z.; Liu, X.; Shi, X.; Uvdal, K.; Fahlman, M.; Zhang, W.;

Duchamp, M.; Liu, J.-M.; Petrozza, A.; Wang, J.; Liu, L.-M.; Huang, W.; Gao, F. Rational Molecular Passivation for High-Performance Perovskite Light-Emitting Diodes. Nat. Photonics 2019,13(6), 418–424.

(30) Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; Li, W.; Liu, X.; Lu, Y.; Kirman, J.; Sargent, E. H.; Xiong, Q.; Wei, Z. Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 Per Cent. Nature 2018, 562(7726), 245–248.

(31) Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.;

Shivanna, R.; Radicchi, E.; Jeong, M.; Yang, C.; Choi, H.; Park, S. H.; Song, M. H.; De Angelis, F.; Wong, C. Y.; Friend, R. H.; Lee, B. R.; Snaith, H. J. Ligand-Engineered Bandgap Stability in Mixed-Halide Perovskite LEDs. Nature 2021,591(7848), 72–77.

(32) Kim, Y.-H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y.-H.; Xu, H.; Nagane, S.; Wexler, R. B.; Kim, D.-H.; Jo, S. H.; Martínez-Sarti, L.; Tan, P.; Sadhanala, A.; Park, G.-S.; Kim, Y.-W.;

124

Hu, B.; Bolink, H. J.; Yoo, S.; Friend, R. H.; Rappe, A. M.; Lee, T.-W. Comprehensive Defect Suppression in Perovskite Nanocrystals for High-Efficiency Light-Emitting Diodes. Nat.

Photonics 2021,15(2), 148–155.

(33) Gangishetty, M. K.; Hou, S.; Quan, Q.; Congreve, D. N. Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes. Adv. Mater. 2018,30(20), 1706226.

(34) Shin, Y. S.; Yoon, Y. J.; Heo, J.; Song, S.; Kim, J. W.; Park, S. Y.; Cho, H. W.; Kim, G.-H.; Kim, J. Y. Functionalized PFN-X (X = Cl, Br, or I) for Balanced Charge Carriers of Highly Efficient Blue Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020,12(31), 35740–35747.

(35) Tang, X.; van den Berg, M.; Gu, E.; Horneber, A.; Matt, G. J.; Osvet, A.; Meixner, A. J.; Zhang, D.; Brabec, C. J. Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Lett. 2018,18(3), 2172–2178.

(36) Draguta, S.; Sharia, O.; Yoon, S. J.; Brennan, M. C.; Morozov, Y. V.; Manser, J. S.; Kamat, P. V.;

Schneider, W. F.; Kuno, M. Rationalizing the Light-Induced Phase Separation of Mixed Halide Organic–Inorganic Perovskites. Nat. Commun. 2017,8(1), 200.

(37) Shin, Y. S.; Yoon, Y. J.; Lee, K. T.; Jeong, J.; Park, S. Y.; Kim, G.-H.; Kim, J. Y. Vivid and Fully Saturated Blue Light-Emitting Diodes Based on Ligand-Modified Halide Perovskite Nanocrystals. ACS Appl. Mater. Interfaces 2019,11(26), 23401–23409.

(38) Lei, L.; Seyitliyev, D.; Stuard, S.; Mendes, J.; Dong, Q.; Fu, X.; Chen, Y.-A.; He, S.; Yi, X.; Zhu, L.; Chang, C.-H.; Ade, H.; Gundogdu, K.; So, F. Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing. Adv. Mater. 2020,32(16), 1906571.

(39) Fieramosca, A.; De Marco, L.; Passoni, M.; Polimeno, L.; Rizzo, A.; Rosa, B. L. T.; Cruciani, G.; Dominici, L.; De Giorgi, M.; Gigli, G.; Andreani, L. C.; Gerace, D.; Ballarini, D.; Sanvitto, D. Tunable out-of-Plane Excitons in 2D Single-Crystal Perovskites. ACS Photonics 2018,5(10), 4179–4185.

(40) Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.;

Wei, Y.; Guo, Q.; Ke, Y.; Yu, M.; Jin, Y.; Liu, Y.; Ding, Q.; Di, D.; Yang, L.; Xing, G.; Tian, H.;

Jin, C.; Gao, F.; Friend, R. H.; Wang, J.; Huang, W. Perovskite Light-Emitting Diodes Based on Solution-Processed Self-Organized Multiple Quantum Wells. Nat. Photonics 2016, 10 (11), 699–704.

(41) Kumar, G. S.; Sumukam, R. R.; Murali, B. Quasi-2D Perovskite Emitters: A Boon for Efficient Blue Light-Emitting Diodes. J. Mater. Chem. C 2020,8(41), 14334–14347.

(42) Liu, Y.; Cui, J.; Du, K.; Tian, H.; He, Z.; Zhou, Q.; Yang, Z.; Deng, Y.; Chen, D.; Zuo, X.; Ren, Y.; Wang, L.; Zhu, H.; Zhao, B.; Di, D.; Wang, J.; Friend, R. H.; Jin, Y. Efficient Blue Light- Emitting Diodes Based on Quantum-Confined Bromide Perovskite Nanostructures. Nat.

Photonics 2019,13(11), 760–764.

(43) Cho, A.; Kim, S.; Kim, S.; Cho, W.; Park, C.; Kim, F. S.; Kim, J. H. Influence of Imidazole-

125

Based Acidity Control of PEDOT:PSS on Its Electrical Properties and Environmental Stability.

J. Polym. Sci. B Polym. Phys 2016,54(15), 1530–1536.

(44) Seo, H.-K.; Kim, H.; Lee, J.; Park, M.-H.; Jeong, S.-H.; Kim, Y.-H.; Kwon, S.-J.; Han, T.-H.;

Yoo, S.; Lee, T.-W. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode. Adv. Mater. 2017,29(12), 1605587.

(45) Yun, J.-M.; Yeo, J.-S.; Kim, J.; Jeong, H.-G.; Kim, D.-Y.; Noh, Y.-J.; Kim, S.-S.; Ku, B.-C.; Na, S.-I. Solution-Processable Reduced Graphene Oxide as a Novel Alternative to PEDOT:PSS Hole Transport Layers for Highly Efficient and Stable Polymer Solar Cells. Adv. Mater. 2011, 23(42), 4923–4928.

(46) Shen, Y.; Shen, K.-C.; Li, Y.-Q.; Guo, M.; Wang, J.; Ye, Y.; Xie, F.-M.; Ren, H.; Gao, X.; Song, F.; Tang, J.-X. Interfacial Potassium-Guided Grain Growth for Efficient Deep-Blue Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2021,31(6), 2006736.

(47) Shen, Y.; Wu, H.-Y.; Li, Y.-Q.; Shen, K.-C.; Gao, X.; Song, F.; Tang, J.-X. Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Light-Emitting Diodes. Adv.

Funct. Mater. 2021,31(45), 2103870.

(48) Lee, T. W.; Chung, Y.; Kwon, O.; Park, J. J. Self-Organized Gradient Hole Injection to Improve the Performance of Polymer Electroluminescent Devices. Adv. Funct. Mater. 2007,17(3), 390–

396.

(49) Ahn, S.; Kim, Y.-H.; Kim, S.; Park, J.; Li, N.; Heo, J.-M.; Kim, J. S.; Kim, D. J.; Hong, B. H.;

Lee, J. Y.; Lee, T.-W. Synergistic Molecular Engineering of Hole-Injecting Conducting Polymers Overcomes Luminescence Quenching in Perovskite Light-Emitting Diodes. Adv. Opt.

Mater. 2021,9(18), 2100646.

(50) Thanavelan, R.; Ramalingam, G.; Manikandan, G.; Thanikachalam, V. Stability Constants of Mixed Ligand Complexes of Lead(II) with 1-(Aminomethyl) Cyclohexane Acetic Acid and α- Amino Acids. J. Saudi Chem. Soc. 2014,18(3), 227–233.

(51) Marandi, F.; Shahbakhsh, N. Synthesis and Crystal Structure of [Pb(phe)2]n: A 2D Coordination Polymer of Lead(II) Containing Phenylalanine. Z. Anorg. Allg. Chem.2007,633(8), 1137–1139.

(52) Lee, S.; Jang, C. H.; Nguyen, T. L.; Kim, S. H.; Lee, K. M.; Chang, K.; Choi, S. S.; Kwak, S.

K.; Woo, H. Y.; Song, M. H. Conjugated Polyelectrolytes as Multifunctional Passivating and Hole-Transporting Layers for Efficient Perovskite Light-Emitting Diodes. Adv. Mater. 2019,31 (24), 1900067.

(53) Kim, Y.-H.; Lee, G.-H.; Kim, Y.-T.; Wolf, C.; Yun, H. J.; Kwon, W.; Park, C. G.; Lee, T. W. High Efficiency Perovskite Light-Emitting Diodes of Ligand-Engineered Colloidal Formamidinium Lead Bromide Nanoparticles.Nano Energy 2017,38, 51–58.

(54) Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J.

Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of

126

Organic–Inorganic Lead Halide Perovskites. ACS Nano 2014,8(10), 9815–9821.

(55) Chun-Ren Ke, J.; Walton, A. S.; Lewis, D. J.; Tedstone, A.; O'Brien, P.; Thomas, A. G.; Flavell, W. R. In situ Investigation of Degradation at Organometal Halide Perovskite Surfaces by X-Ray Photoelectron Spectroscopy at Realistic Water Vapour Pressure. Chem. Commun. 2017,53(37), 5231–5234.

(56) Wang, S.; Wang, A.; Deng, X.; Xie, L.; Xiao, A.; Li, C.; Xiang, Y.; Li, T.; Ding, L.; Hao, F.

Lewis Acid/Base Approach for Efficacious Defect Passivation in Perovskite Solar Cells. J.

Mater. Chem. A 2020,8(25), 12201–12225.

(57) Kim, J.-H.; Kim, Y. R.; Park, B.; Hong, S.; Hwang, I.-W.; Kim, J.; Kwon, S.; Kim, G.; Kim, H.;

Lee, K. Simultaneously Passivating Cation and Anion Defects in Metal Halide Perovskite Solar Cells Using a Zwitterionic Amino Acid Additive. Small 2021,17(3), 2005608.

(58) Wu, Z.; Jiang, M.; Liu, Z.; Jamshaid, A.; Ono, L. K.; Qi, Y. Highly Efficient Perovskite Solar Cells Enabled by Multiple Ligand Passivation. Adv. Energy Mater. 2020,10(10), 1903696.

(59) Ahn, S.; Park, M.-H.; Jeong, S.-H.; Kim, Y.-H.; Park, J.; Kim, S.; Kim, H.; Cho, H.; Wolf, C.;

Pei, M.; Yang, H.; Lee, T.-W. Fine Control of Perovskite Crystallization and Reducing Luminescence Quenching Using Self-Doped Polyaniline Hole Injection Layer for Efficient Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2019,29(6), 1807535.

(60) de Jong, M. P.; van Ijzendoorn, L. J.; de Voigt, M. J. A. Stability of the Interface between Indium- Tin-Oxide and Poly(3,4-Ethylenedioxythiophene)/Poly(Styrenesulfonate) in Polymer Light- Emitting Diodes. Appl. Phys. Lett. 2000,77(14), 2255–2257.

(61) Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H. Perovskite Energy Funnels for Efficient Light-Emitting Diodes. Nat. Nanotechnol. 2016,11(10), 872–877.

(62) Ren, Z.; Yu, J.; Qin, Z.; Wang, J.; Sun, J.; Chan, C. C. S.; Ding, S.; Wang, K.; Chen, R.; Wong, K. S.; Lu, X.; Yin, W.-J.; Choy, W. C. H. High-Performance Blue Perovskite Light-Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasi-2D Perovskite Layers.

Adv. Mater. 2021,33(1), 2005570.

(63) Liu, M.; Voznyy, O.; Sabatini, R.; García de Arquer, F. P.; Munir, R.; Balawi, Ahmed H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, Ahmad R.; Hoogland, S.; Laquai, F.; Amassian, A.; Sargent, Edward H. Hybrid Organic–Inorganic Inks Flatten the Energy Landscape in Colloidal Quantum Dot Solids. Nat. Mater. 2017,16(2), 258–263.

(64) Wang, H.; Zhang, X.; Wu, Q.; Cao, F.; Yang, D.; Shang, Y.; Ning, Z.; Zhang, W.; Zheng, W.;

Yan, Y.; Kershaw, S. V.; Zhang, L.; Rogach, A. L.; Yang, X. Trifluoroacetate Induced Small- Grained CsPbBr3Perovskite Films Result in Efficient and Stable Light-Emitting Devices. Nat.

Commun. 2019,10(1), 665.

(65) Gil-Escrig, L.; Longo, G.; Pertegás, A.; Roldán-Carmona, C.; Soriano, A.; Sessolo, M.; Bolink,

127

H. J. Efficient Photovoltaic and Electroluminescent Perovskite Devices. ChemComm 2015,51 (3), 569–571.

(66) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo Jin, H.; Sadhanala, A.; Myoung, N.; Yoo, S.; Im Sang, H.; Friend Richard, H.; Lee, T.-W. Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 2015, 350(6265), 1222–1225.

(67) Sutherland, B. R.; Sargent, E. H. Perovskite Photonic Sources. Nat. Photonics 2016, 10(5), 295–302.

(68) Kang, J.; Wang, L.-W. High Defect Tolerance in Lead Halide Perovskite CsPbBr3. J. Phys. Chem.

Lett. 2017,8(2), 489–493.

(69) Brandt, R. E.; Poindexter, J. R.; Gorai, P.; Kurchin, R. C.; Hoye, R. L. Z.; Nienhaus, L.; Wilson, M. W. B.; Polizzotti, J. A.; Sereika, R.; Žaltauskas, R.; Lee, L. C.; MacManus-Driscoll, J. L.;

Bawendi, M.; Stevanović, V.; Buonassisi, T. Searching for “Defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening. Chem. Mater. 2017, 29 (11), 4667–4674.

(70) Yang, J.-N.; Chen, T.; Ge, J.; Wang, J.-J.; Yin, Y.-C.; Lan, Y.-F.; Ru, X.-C.; Ma, Z.-Y.; Zhang, Q.; Yao, H.-B. High Color Purity and Efficient Green Light-Emitting Diode Using Perovskite Nanocrystals with the Size Overly Exceeding Bohr Exciton Diameter. J. Am. Chem. Soc. 2021, 143(47), 19928–19937.

(71) Kim, Y.-H.; Wolf, C.; Kim, Y.-T.; Cho, H.; Kwon, W.; Do, S.; Sadhanala, A.; Park, C. G.; Rhee, S.-W.; Im, S. H.; Friend, R. H.; Lee, T.-W. Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals Beyond Quantum Size. ACS Nano 2017,11(7), 6586–

6593.

(72) Zheng, X.; Yuan, S.; Liu, J.; Yin, J.; Yuan, F.; Shen, W.-S.; Yao, K.; Wei, M.; Zhou, C.; Song, K.; Zhang, B.-B.; Lin, Y.; Hedhili, M. N.; Wehbe, N.; Han, Y.; Sun, H.-T.; Lu, Z.-H.;

Anthopoulos, T. D.; Mohammed, O. F.; Sargent, E. H.; Liao, L.-S.; Bakr, O. M. Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Lett. 2020, 5(3), 793–

798.

(73) Xing, J.; Zhao, Y.; Askerka, M.; Quan, L. N.; Gong, X.; Zhao, W.; Zhao, J.; Tan, H.; Long, G.;

Gao, L.; Yang, Z.; Voznyy, O.; Tang, J.; Lu, Z.-H.; Xiong, Q.; Sargent, E. H. Color-Stable Highly Luminescent Sky-Blue Perovskite Light-Emitting Diodes. Nat. Commun. 2018,9(1), 3541.

(74) Ma, D.; Lin, K.; Dong, Y.; Choubisa, H.; Proppe, A. H.; Wu, D.; Wang, Y.-K.; Chen, B.; Li, P.;

Fan, J. Z.; Yuan, F.; Johnston, A.; Liu, Y.; Kang, Y.; Lu, Z.-H.; Wei, Z.; Sargent, E. H.

Distribution Control Enables Efficient Reduced-Dimensional Perovskite LEDs. Nature 2021, 599(7886), 594–598.

128

(75) Yuan, S.; Cui, L.-S.; Dai, L.; Liu, Y.; Liu, Q.-W.; Sun, Y.-Q.; Auras, F.; Anaya, M.; Zheng, X.;

Ruggeri, E.; Yu, Y.-J.; Qu, Y.-K.; Abdi-Jalebi, M.; Bakr, O. M.; Wang, Z.-K.; Stranks, S. D.;

Greenham, N. C.; Liao, L.-S.; Friend, R. H. Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes Employing a Cationic π-Conjugated Polymer. Adv. Mater. 2021,33(45), 2103640.

(76) Straus, D. B.; Kagan, C. R. Electrons, Excitons, and Phonons in Two-Dimensional Hybrid Perovskites: Connecting Structural, Optical, and Electronic Properties. J. Phys. Chem. Lett.

2018,9(6), 1434–1447.

(77) Lin, Y.; Firdaus, Y.; Isikgor, F. H.; Nugraha, M. I.; Yengel, E.; Harrison, G. T.; Hallani, R.; El- Labban, A.; Faber, H.; Ma, C.; Zheng, X.; Subbiah, A.; Howells, C. T.; Bakr, O. M.; McCulloch, I.; Wolf, S. D.; Tsetseris, L.; Anthopoulos, T. D. Self-Assembled Monolayer Enables Hole Transport Layer-Free Organic Solar Cells with 18% Efficiency and Improved Operational Stability. ACS Energy Lett. 2020,5(9), 2935–2944.

(78) Lin, Y.; Magomedov, A.; Firdaus, Y.; Kaltsas, D.; El-Labban, A.; Faber, H.; Naphade, D. R.;

Yengel, E.; Zheng, X.; Yarali, E.; Chaturvedi, N.; Loganathan, K.; Gkeka, D.; AlShammari, S.

H.; Bakr, O. M.; Laquai, F.; Tsetseris, L.; Getautis, V.; Anthopoulos, T. D. 18.4 % Organic Solar Cells Using a High Ionization Energy Self-Assembled Monolayer as Hole-Extraction Interlayer.

ChemSusChem 2021,14(17), 3569–3578.

(79) Ali, F.; Roldán-Carmona, C.; Sohail, M.; Nazeeruddin, M. K. Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability.

Adv. Energy Mater. 2020,10(48), 2002989.

(80) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996,6(1), 15–50.

(81) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple.

Phys. Rev. Lett. 1996,77(18), 3865–3868.

(82) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H- Pu. J. Chem. Phys. 2010,132(15), 154104.

(83) Fu, B.; Dong, X.; Yu, X.; Zhang, Z.; Sun, L.; Zhu, W.; Liang, X.; Xu, H. Meso-Borneol- and Meso-Carbazole-Substituted Porphyrins: Multifunctional Chromophores with Tunable Electronic Structures and Antitumor Activities. New J. Chem. 2021,45(4), 2141–2146.

(84) Sun, X.; Zhang, B.; Li, X.; Trindle, C. O.; Zhang, G. External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-Ray Diffraction. J. Phys. Chem. A 2016,120(29), 5791–5797.

(85) Timpel, M.; Li, H.; Nardi, M. V.; Wegner, B.; Frisch, J.; Hotchkiss, P. J.; Marder, S. R.; Barlow, S.; Brédas, J.-L.; Koch, N. Electrode Work Function Engineering with Phosphonic Acid

Dokumen terkait