Raman spectra were obtained with Alpha300R (WITec) using a 532 nm He-Ne laser. The cycle tests us- ing liquid electrolytes were obtained by using 2032-type coin cells. The composite electrodes were pre- pared by spreading LCO powders (p-LCO or w-LCO), Super P, and poly(vinylidene fluoride) (PVDF) binder (KF1100, Kureha Inc.) on Al foil. The weight ratios of LCO:Super P:PVDF were 90:5:5. Li metal foil was used as both counter and reference electrode.
Figure S1. Photograph of the Li4SnS4-dissolved aqueous solution.
Figure S2. Raman spectra of LSS320 and LSS450.
Raman Shift (cm
-1)
100 200
300 400
500
LSS450
LSS320
Figure S3. Arrhenius plots of Li ionic conductivity for aqueous-solution processed Li4SnS4 powders (LSS320) before and after dry-air exposure.
Figure S4. Raman spectra of LSS-coated LiCoO2. The spectra of LSS320 is also shown for comparison.
Raman Shift (cm
-1)
100 200
300 400
500
LSS-coated LiCoO2
LSS320
Figure S5. HRTEM images of LSS-coated LiCoO2 particle.
Figure S6. Rate capabilities of p-LCO and w-LCO electrodes in liquid-electrolyte cells cycled between 3.0-4.3 V (vs. Li/Li+).
Figure S7. Rate capability of the 0.4LiI-0.6LSS200-coated LiCoO2 electrode. a) Variations in discharge capacities versus charge-discharge cycle number at different C-rates. b) Discharge voltage profiles at dif- ferent C-rates. The LiCoO2:0.4LiI-0.6LSS200 weight ratio in the composite electrodes was 85:15. The data for the mixed electrodes and the LSS320-coated LiCoO2 electrodes are also shown for comparison
REFERENCES
1. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chem Mater 2010, 22 (3), 587-603.
2. (a) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.;
Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor.
Nat. Mater.
2011, 10, 682-686; (b) Jung, Y. S.; Oh, D. Y.; Nam, Y. J.; Park, K. H., Issues andChallenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes. Israel J. Chem. 2015, 55, 472; (c) Janek, J.; Zeier, W. G., A solid future for battery development. Nat. Energy 2016; (d) Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J.-Y.; Xin, H.; Lin, F.; Oh, S. M.; Jung, Y. S., Solution-Processable Glass LiI-Li
4SnS
4Superionic Conductors for All-Solid-State Li-Ion Batteries. Adv. Mater. 2016, 28, 1874-1883; (e) Kato, Y.;
Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High- power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030; (f) Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G., Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026.
3. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ.
Sci. 2014, 7 (2), 627-631.
4. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem.
Rev. 2004, 104, 4303-4417.
5. Shin, B. R.; Nam, Y. J.; Oh, D. Y.; Kim, D. H.; Kim, J. W.; Jung, Y. S., Comparative Study of TiS
2/Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li
3PS
4and Li
10GeP
2S
12Solid Electrolytes. Electrochim. Acta 2014, 146, 395-402.
6. Sakuda, A.; Hayashi, A.; Tatsumisago, M., Interfacial Observation between LiCoO
2Electrode and Li
2S-P
2S
5Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy. Chem. Mater. 2010, 22, 949-956.
7. Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y., Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery. Chem. Mater. 2014, 26 (14), 4248-4255.
8. Oh, D. Y.; Nam, Y. J.; Park, K. H.; Jung, S. H.; Cho, S.-J.; Kim, Y. K.; Lee, Y.-G.; Lee, S.-Y.; Jung, Y. S., Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes:
Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. Adv.
Energy Mater. 2015, 5, 1500865.
9. Ohta, S.; Seki, J.; Yagi, Y.; Kihira, Y.; Tani, T.; Asoka, T., Co-sinterable lithium garnet- type oxide electrolyte with cathode for all-solid-state lithium ion battery. J. Power Sources 2014, 265, 40-44.
10. (a) Jeong, S.-K.; Inaba, M.; Iriyarna, Y.; Abe, T.; Ogumi, Z., Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction. J. Power Sources 2008, 175 (1), 540- 546; (b) Kotobuki, M.; Munakata, H.; Kanamura, K.; Sato, Y.; Yoshida, T., Compatibility of Li
7La
3Zr
2O
12Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode. J. Electrochem.
Soc. 2010, 157 (10), A1076-A1079.
11. (a) Sakuda, A.; Hayashi, A.; Tatsumisago, M., Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Sci. Rep. 2013, 3, 2261; (b) Nam, Y. J.;
Jo, S. J.; Oh, D. Y.; Im, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S., Bendable
and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Lett. 2015, 15, 3317.
12. Banerjee, A.; Park, K. H.; Heo, J. W.; Nam, Y. J.; Moon, C. K.; Oh, S. M.; Hong, S.-T.;
Jung, Y. S., Na
3SbS
4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2016, 55, 9634.
13. Trevey, J. E.; Stoldt, C. R.; Lee, S. H., High Power Nanocomposite TiS2 Cathodes for All- Solid-State Lithium Batteries. J Electrochem Soc 2011, 158 (12), A1282-A1289.
14. Oh, D. Y.; Choi, Y. E.; Kim, D. H.; Lee, Y. G.; Kim, B. S.; Park, J.; Sohn, H.; Jung, Y. S., All-solid-state lithium-ion batteries with TiS2 nanosheets and sulphide solid electrolytes. J Mater Chem A 2016, 4 (26), 10329-10335.
15. Shin, B. R.; Nam, Y. J.; Kim, J. W.; Lee, Y. G.; Jung, Y. S., Interfacial Architecture for Extra Li+ Storage in All-Solid-State Lithium Batteries. Sci Rep-Uk 2014, 4.
16. Sakuda, A.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., LiCoO
2Electrode Particles Coated With Li
2S-P
2S
5Solid Electrolyte for All-Solid-State Batteries. Electrochem.
Solid-State Lett. 2010, 13 (6), A73-A75.
17. Wang, Y.; Liu, Z.; Zhu, X.; Tang, Y.; Huang, F., Highly lithium-ion conductive thio- LISICON thin film processed by low-temperature solution method. J. Power Sources 2013, 224, 225-229.
18. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.;
Rondinone, A. J.; Liang, C., Anomalous High Ionic Conductivity of Nanoporous beta-Li
3PS
4. J.
Am. Chem. Soc. 2013, 135 (3), 975-978.
19. Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Preparation of Li
2S- P
2S
5solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. J. Power Sources 2014, 248, 939-942.
20. Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.;
Liang, C., An Iodine-Based Li
7P
2S
8I Superionic Conductor. J. Am. Chem. Soc.
2015,137 (4), 1384-1387.
21. Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Preparation of high lithium-ion conducting Li
6PS
5Cl solid electrolyte from ethanol solution for all- solid-state lithium batteries. J. Power Sources 2015, 293, 941-945.
22. Kaib, T.; Haddadpour, S.; Kapitein, M.; Bron, P.; Schroeder, C.; Eckert, H.; Roling, B.;
Dehnen, S., New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li
+-Conducting Tetralithium ortho-Sulfidostannate Li
4SnS
4. Chem. Mater. 2012, 24 (11), 2211- 2219.
23. Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li
4SnS
4. Energy Environ. Sci. 2014, 7 (3), 1053-1058.
24. Brant, J. A.; Massi, D. M.; Holzwarth, N. A. W.; MacNeil, J. H.; Douvalis, A. P.; Bakas, T.; Martin, S. W.; Gross, M. D.; Aitken, J. A., Fast Lithium Ion Conduction in Li
2SnS
3: Synthesis, Physicochemical Characterization, and Electronic Structure. Chem. Mater. 2015, 27 (1), 189-196.
25. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657.
26. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 2015, 17 (7), 4799-4844.
27. Whittingham, M. S., Lithium batteries and cathode materials. Chem Rev 2004, 104 (10), 4271-4301.
28. Kim, M. G.; Shin, H. J.; Kim, J. H.; Park, S. H.; Sun, Y. K., XAS investigation of
inhomogeneous metal-oxygen bond covalency in bulk and surface for charge compensation in li-
ion battery cathode Li[Ni1/3Co1/3Mn1/3]O-2 material. J Electrochem Soc 2005, 152 (7), A1320- A1328.
29. Kim, D.; Yoon, T.; Park, S.; Shin, S.; Ryu, J. H.; Oh, S. M., Re-Deposition of Aluminum Species after Dissolution to Improve Electrode Performances of Lithium Manganese Oxide. J Electrochem Soc 2014, 161 (14), A2020-A2025.
30. Yoon, T.; Kim, D.; Park, K. H.; Park, H.; Jurng, S.; Jang, J.; Ryu, J. H.; Kim, J. J.; Oh, S.
M., Compositional Change of Surface Film Deposited on LiNi0.5Mn1.5O4 Positive Electrode. J Electrochem Soc 2014, 161 (4), A519-A523.
31. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybutin, E.; Zhang, Y. H.; Zhang, J. G., Lithium metal anodes for rechargeable batteries. Energ Environ Sci 2014, 7 (2), 513-537.
32. (a) Tamura, N.; Ohshita, R.; Fujimoto, M.; Kamino, M.; Fujitani, S., Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries. J Electrochem Soc
2003, 150 (6), A679-A683; (b) Winter, M.; Besenhard, J. O., Electrochemical lithiation of tin andtin-based intermetallics and composites. Electrochimica Acta 1999, 45 (1-2), 31-50.
33. Stramare, S.; Thangadurai, V.; Weppner, W., Lithium lanthanum titanates: A review.
Chem Mater 2003, 15 (21), 3974-3990.
34. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Edit 2007, 46 (41), 7778-7781.
35. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G., Ionic-Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J Electrochem Soc 1990, 137 (4), 1023-1027.
36. Kanno, R.; Maruyama, M., Lithium ionic conductor thio-LISICON - The Li2S-GeS2-P2S5 system. J Electrochem Soc 2001, 148 (7), A742-A746.
37. Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., Modification of Interface Between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolyte Using Li2O-SiO2 Glassy Layers. J Electrochem Soc 2009, 156 (1), A27-A32.
38. Ohta, N.; Takada, K.; Zhang, L. Q.; Ma, R. Z.; Osada, M.; Sasaki, T., Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 2006, 18 (17), 2226-+.
39. Mucha, M.; Jungwirth, P., Salt crystallization from an evaporating aqueous solution by molecular dynamics simulations. J. Phys. Chem. B 2003, 107 (33), 8271-8274.
40. (a) Liang, C. C., Conduction Characteristics of Lithium Iodide Aluminum Oxide Solid Electrolytes. J. Electrochem. Soc.
1973,120 (10), 1289-1292; (b) Maier, J., Nanoionics: ion trasport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805-815.
41. (a) Liu, H. S.; Zhang, Z. R.; Gong, Z. L.; Yang, Y., Origin of deterioration for LiNiO
2cathode material during storage in air. Electrochem. Solid-State Lett. 2004, 7 (7), A190-A193; (b) Chen, Z.; Dahn, J. R., Studies of LiCoO
2Coated with Metal Oxides. Electrochem. Solid-State Lett.
2003, 6 (11), A221-A224; (c) Motzko, M.; Solano, M. A. C.; Jaegermann, W.; Hausbrand, R.,