VI. Supporting information
6.4 Supporting tables
47
48
Table S2. Crystallographic data and Rietveld refinement results for the sample with x = 0.000 for Na3- 2xCaxPS4 prepared at 700 β.
Crystal System Tetragonal
Space Group P -4 21 c (No. 114)
Lattice Parameter, Volume, Z a = 6.9555(3) Γ , c = 7.0887(4) Γ
V = 342.95(4) Γ 3, Z = 2
Atoms x y z Wyckoff Occupancy Uiso
Na1 0 0.5 0.4234(10) 4d 1 0.034(3)
Na2 0 0 0 2a 1 0.036(5)
P 0 0 0.5 2b 1 0.025(3)
S 0.3129(5) 0.3460(5) 0.1656(5) 8e 1 0.024(1)
*Rp : 0.0757, Rwp : 0.0984, Rexp : 0.0856, R(F2) : 0.1951, π2 = 1.327
Table S3. Selected interatomic distances and angles for the sample with x = 0.000 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.037(5) Γ 2 Na2-S 3.451(4) Γ 4
2.972(6) Γ 2 2.908(4) Γ 4
2.808(4) Γ 2
P-S 2.054(3) Γ 4
Selected interatomic angles (Β°)
S-P-S 110.3(2) Γ 2
109.1(1) Γ 4
49
Table S4. Crystallographic data and Rietveld refinement results for the sample with x = 0.075 for Na3- 2xCaxPS4 prepared at 700 β.
Crystal System Cubic
Space Group I -4 3 m (No. 217)
Lattice Parameter, Volume, Z a = 6.9803(3) Γ
V = 340.11(4) Γ 3, Z = 2
Atoms x y z Wyckoff Occupancy Uiso
Na1 0.5 0.5 0 6b 0.697(4) 0.036(4)
Na2 0.75 0.5 0 12d 0.115(11) 0.036(4)
Ca 0.5 0.5 0 6b 0.0373 0.036(4)
P 0 0 0.5 2a 1 0.020(5)
S 0.1726(4) 0.1726(4) 0.1726(4) 8c 1 0.022(3)
* Rp : 0.0793, Rwp : 0.1008, Rexp : 0.0883, R(F2) : 0.1991, π2 = 1.601
Table S5. Selected interatomic distances and angles for the sample with x = 0.075 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.449(3) Γ 4 Ca-S 3.449(3) Γ 4
2.851(1) Γ 4 2.851(1) Γ 4
Na2-S 2.640(2) Γ 4 P-S 2.086(5) Γ 4
Selected interatomic angles (Β°)
S-P-S 109.471(3) Γ 2
109.471(2) Γ 4
50
Table S6. Crystallographic data and Rietveld refinement results for the sample with x = 0.120 for Na3- 2xCaxPS4 prepared at 700 β.
Crystal System Cubic
Space Group I -4 3 m (No. 217)
Lattice Parameter, Volume, Z a = 6.9773(1) Γ
V = 339.67(2) Γ 3, Z = 2
Atoms X y z Wyckoff Occupancy Uiso
Na1 0.5 0.5 0 6b 0.682(3) 0.036(3)
Na2 0.75 0.5 0 12d 0.100(10) 0.036(3)
Ca 0.5 0.5 0 6b 0.0570 0.036(3)
P 0 0 0 2a 1 0.030(4)
S 0.1691(4) 0.1691(4) 0.1691(4) 8c 1 0.019(2)
* Rp : 0.0821, Rwp : 0.1065, Rexp : 0.0865, R(F2) : 0.3357, π2 = 1.757
Table S7. Selected interatomic distances and angles for the sample with x = 0.120 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.472(3) Γ 4 Ca-S 3.472(3) Γ 4
2.849(1) Γ 4 2.849(1) Γ 4
Na2-S 2.654(2) Γ 4 P-S 2.043(5) Γ 4
Selected interatomic angles (Β°)
S-P-S 109.471(1) Γ 6
51
Table S8. Crystallographic data and Rietveld refinement results for the sample with x = 0.135 for Na3- 2xCaxPS4 prepared at 700 β.
Crystal System Cubic
Space Group I -4 3 m (No. 217)
Lattice Parameter, Volume, Z a = 6.9768(1) Γ
V = 339.61(1) Γ 3, Z = 2
Atoms x y z Wyckoff Occupancy Uiso
Na1 0.5 0.5 0 6b 0.693(1) 0.032(1)
Na2 0.75 0.5 0 12d 0.105(3) 0.032(1)
Ca 0.5 0.5 0 6b 0.0493 0.032(1)
P 0 0 0 2a 1 0.026(1)
S 0.1708(1) 0.1708(1) 0.1708(1) 8c 1 0.026(1)
* Rp : 0.0473, Rwp : 0.0637, Rexp : 0.0406, R(F2) : 0.2423, π2 = 2.470
Table S9. Selected interatomic distances and angles for the sample with x = 0.135 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.460(1) Γ 4 Ca-S 3.460(1) Γ 4
2.849(1) Γ 4 2.849(1) Γ 4
Na2-S 2.646(1) Γ 4 P-S 2.064(2) Γ 4
Selected interatomic angles (Β°)
S-P-S 109.471(1) Γ 2
109.471(0) Γ 4
52
Table S10. Crystallographic data and Rietveld refinement results for the sample with x = 0.150 for Na3-2xCaxPS4 prepared at 700 β.
Crystal System Cubic
Space Group I -4 3 m (No. 217)
Lattice Parameter, Volume, Z a = 6.9750(1) Γ
V = 339.34(2) Γ 3, Z = 2
Atoms x y z Wyckoff Occupancy Uiso
Na1 0.5 0.5 0 6b 0.682(4) 0.033(2)
Na2 0.75 0.5 0 12d 0.101(6) 0.033(2)
Ca 0.5 0.5 0 6b 0.0553 0.033(2)
P 0 0 0 2a 1 0.026(3)
S 0.1703(3) 0.1703(3) 0.1703(3) 8c 1 0.026(2)
* Rp : 0.0817, Rwp : 0.1085, Rexp : 0.0872, R(F2) : 0.2405, π2 = 1.553
Table S11. Selected interatomic distances and angles for the sample with x = 0.150 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.463(2) Γ 4 Ca-S 3.463(2) Γ 4
2.848(1) Γ 4 2.848(1) Γ 4
Na2-S 2.648(1) Γ 4 P-S 2.057(3) Γ 4
Selected interatomic angles (Β°)
S-P-S 109.471(1) Γ 6
53
Table S12. Crystallographic data and Rietveld refinement results for the sample with x = 0.180 for Na3-2xCaxPS4 prepared at 700 β.
Crystal System Cubic
Space Group I -4 3 m (No. 217)
Lattice Parameter, Volume, Z a = 6.9723(1) Γ
V = 338.94(2) Γ 3, Z = 2
Atoms x y z Wyckoff Occupancy Uiso
Na1 0.5 0.5 0 6b 0.651(3) 0.034(4)
Na2 0.75 0.5 0 12d 0.101(10) 0.034(4)
Ca 0.5 0.5 0 6b 0.0707 0.034(4)
P 0 0 0 2a 1 0.020(4)
S 0.1705(4) 0.1705(4) 0.1705(4) 8c 1 0.018(2)
* Rp : 0.0782, Rwp : 0.1024, Rexp : 0.0845, R(F2) : 0.2573, π2 = 2.804
Table S13. Selected interatomic distances and angles for the sample with x = 0.180 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.460(3) Γ 4 Ca-S 3.460(3) Γ 4
2.847(1) Γ 4 2.847(1) Γ 4
Na2-S 2.646(2) Γ 4 P-S 2.059(5) Γ 4
Selected interatomic angles (Β°)
S-P-S 109.471(2) Γ 2
109.471(1) Γ 4
54
Table S14. Crystallographic data and Rietveld refinement results for the sample with x = 0.225 for Na3-2xCaxPS4 prepared at 700 β.
Crystal System Cubic
Space Group I -4 3 m (No. 217)
Lattice Parameter, Volume, Z a = 6.9695(1) Γ
V = 338.54(2) Γ 3, Z = 2
Atoms x y z Wyckoff Occupancy Uiso
Na1 0.5 0.5 0 6b 0.628(2) 0.036(3)
Na2 0.75 0.5 0 12d 0.104(8) 0.036(3)
Ca 0.5 0.5 0 6b 0.0817 0.036(3)
P 0 0 0 2a 1 0.021(3)
S 0.1710(3) 0.1710(3) 0.1710(3) 8c 1 0.020(2)
* Rp : 0.0837, Rwp : 0.1096, Rexp : 0.0907, R(F2) : 0.2736, π2 = 1.813
Table S15. Selected interatomic distances and angles for the sample with x = 0.225 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.455(2) Γ 4 Ca-S 3.455(2) Γ 4
2.846(1) Γ 4 2.846(1) Γ 4
Na2-S 2.642(1) Γ 4 P-S 2.064(4) Γ 4
Selected interatomic angles (Β°)
S-P-S 109.471(1) Γ 6
55
Table S16. Crystallographic data and Rietveld refinement results for the sample with x = 0.300 for Na3-2xCaxPS4 prepared at 700 β.
Crystal System Cubic
Space Group I -4 3 m (No. 217)
Lattice Parameter, Volume, Z a = 6.9516(1) Γ
V = 335.93(1) Γ 3, Z = 2
Atoms x y z Wyckoff Occupancy Uiso
Na1 0.5 0.5 0 6b 0.591(1) 0.039(2)
Na2 0.75 0.5 0 12d 0.108(4) 0.039(2)
Ca 0.5 0.5 0 6b 0.100 0.039(2)
P 0 0 0 2a 1 0.025(2)
S 0.1712(2) 0.1712(2) 0.1712(2) 8c 1 0.020(1)
* Rp : 0.0496, Rwp : 0.0651, Rexp : 0.0411, R(F2) : 0.2929, π2 = 2.560
Table S17. Selected interatomic distances and angles for the sample with x = 0.300 for Na3-2xCaxPS4
prepared at 700 β.
Selected interatomic distance (Γ )
Na1-S 3.445(1) Γ 4 Ca-S 3.445(1) Γ 4
2.839(1) Γ 4 2.839(1) Γ 4
Na2-S 2.635(1) Γ 4 P-S 2.061(2) Γ 4
Selected interatomic angles (Β°)
S-P-S 109.471(1) Γ 2
109.471(0) Γ 4
56
Table S18. Characteristics for sulfide Na superionic conductors.
Composition Structure ο³25 [mS cm-1] Ea [eV] Density
[cm3 g-1] Notes Ref
Na3PS4 Tetragonal 0.001
0.077a)
0.416
0.35a) 2.22 J. Solid-State Chem
199216
Na3PS4 Cubic 0.2 or 0.46 0.197 2.21 Nat. Commun. 2011;
JPS 201410
94Na3PS4Β·6Na4SiS4 Cubic 0.74 0.238 2.21 RSC Adv. 201411
Na3PSe4 Cubic 1.16 0.21 3.53 Adv. Energy Mater.
201512
Na10SnP2S12 Tetragonal 0.356 0.356 2.77 Nat. Commun. 2016
46
Na3SbS4 Tetragonal 1.1b)
0.1-0.2c)
0.20b)
0.30-0.37c) 2.85 Dry-air stable Solution-processable
Angew. Chem. Int. Ed.
201613
Na2.9375PS3.9375Cl0.0625 Tetragonal 1d) 0.249 2.19 Sci. Rep. 2016 14
Na3P0.62As0.38S4 Tetragonal 1.46 0.256 2.34 Adv. Mater. 201715
Na2.730Ca0.135PS4 Cubic 0.94 0.49e)
0.346f) 2.22 This work
a) obtained in this work; b) obtained from solid-state synthesized samples; c) obtained from solution- processed samples; d) obtained using spark-plasma-sintered pellets; e) obtained by AC method; f) obtained by 23Na NMR
57
Table S19. Chemical potential of Na and Ca for decomposed products.
Defect type Element Chemical potential Decomposed products
Vacancy Na -2.866 eV Na3PS4 + NaS + P
Interstitial Ca -5.814 eV CaS + Na + Na2S + Na3P + Na3P11 + Na3PS4 + NaP + P
58
References
1. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chemistry of Materials 2010, 22 (3), 587-603.
2. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004, 104 (10), 4303-4417.
3. Jung, Y. S.; Oh, D. Y.; Nam, Y. J.; Park, K. H., Issues and Challenges for Bulk-Type All- Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes. Isr J Chem 2015, 55 (5), 472-485.
4. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1.
5. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.;
Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4).
6. Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G., Design principles for solid-state lithium superionic conductors. Nat Mater 2015, 14 (10), 1026-31.
7. Manthiram, A.; Yu, X.; Wang, S., Lithium battery che mistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4).
8. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S., Research Development on Sodium-Ion Batteries. Chem Rev 2014, 114 (23), 11636-11682.
9. Che, H.; Chen, S.; Xie, Y.; Wang, H.; Amine, K.; Liao, X.-Z.; Ma, Z.-F., Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ.
Sci. 2017, 10 (5), 1075-1101.
10. Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 2012, 3, 856.
11. Tanibata, N.; Noi, K.; Hayashi, A.; Tatsumisago, M., Preparation and characterization of highly sodium ion conducting Na3PS4βNa4SiS4 solid electrolytes. RSC Adv. 2014, 4 (33), 17120-17123.
12. Zhang, L.; Yang, K.; Mi, J. L.; Lu, L.; Zhao, L. R.; Wang, L. M.; Li, Y. M.; Zeng, H., Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. Adv Energy Mater 2015, 5 (24).
13. Banerjee, A.; Park, K. H.; Heo, J. W.; Nam, Y. J.; Moon, C. K.; Oh, S. M.; Hong, S. T.;
Jung, Y. S., Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid- State Sodium-Ion Batteries. Angew Chem Int Edit 2016, 55 (33), 9634-9638.
14. Chu, I. H.; Kompella, C. S.; Nguyen, H.; Zhu, Z.; Hy, S.; Deng, Z.; Meng, Y. S.; Ong, S. P.,
59
Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor. Sci Rep 2016, 6, 33733.
15. Yu, Z.; Shang, S. L.; Seo, J. H.; Wang, D.; Luo, X.; Huang, Q.; Chen, S.; Lu, J.; Li, X.; Liu, Z. K.; Wang, D., Exceptionally High Ionic Conductivity in Na3P0.62As0.38S4 with Improved Moisture Stability for Solid-State Sodium-Ion Batteries. Adv Mater 2017, 29 (16).
16. Jansen, M.; Henseler, U., Synthesis, Structure Determination, and Ionic-Conductivity of Sodium Tetrathiophosphate. Journal of Solid State Chemistry 1992, 99 (1), 110-119.
17. Hu, Y.-S., Batteries: Getting solid. Nature Energy 2016, 1 (4).
18. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D. W.; Lemmon, J. P.;
Liu, J., Electrochemical Energy Storage for Green Grid. Chem Rev 2011, 111 (5), 3577- 3613.
19. Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J.-Y.; Xin, H.; Lin, F.; Oh, S.
M.; Jung, Y. S., Solution-Processable Glass LiI-Li4SnS4 Superionic Conductors for All- Solid-State Li-Ion Batteries. Adv. Mater. 2016, 28, 1874-1883.
20. Tanibata, N.; Noi, K.; Hayashi, A.; Kitamura, N.; Idemoto, Y.; Tatsumisago, M., X -ray Crystal Structure Analysis of Sodium-Ion Conductivity in 94 Na3PS4β 6βNa4SiS4 Glass- Ceramic Electrolytes. ChemElectroChem 2014, 1 (7), 1130-1132.
21. Zhu, Z.; Chu, I.-H.; Deng, Z.; Ong, S. P., Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor. Chemistry of Materials 2015, 27 (24), 8318-8325.
22. Rao, R. P.; Chen, H.; Wong, L. L.; Adams, S., Na3+xMxP1βxS4(M = Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2Ξ΄Fe2βΞ΄(SO4)3|Na3+xMxP1βxS4|Na2Ti3O7. J. Mater.
Chem. A 2017, 5 (7), 3377-3388.
23. Wang, H.; Chen, Y.; Hood, Z. D.; Sahu, G.; Pandian, A. S.; Keum, J. K.; An, K.; Liang, C., An Air-Stable Na3SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. Angew Chem Int Edit 2016, 55 (30), 8551-8555.
24. Bo, S.-H.; Wang, Y.; Kim, J. C.; Richards, W. D.; Ceder, G., Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4. Chem. Mater. 2016, 28, 252.
25. Yu, C.; Ganapathy, S.; de Klerk, N. J. J.; van Eck, E. R. H.; Wagemaker, M., Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries.
J Mater Chem A 2016, 4 (39), 15095-15105.
26. Park, J. K., Principles and applications of lithium secondary bat teries. Hong-Rung Publishing Company: 2014.
27. T. Nagaura, K. T., Lithium-ion rechargeable battery. Prog. Batt. Solar Cells 1990, 9, 209-
60
217.
28. Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. Journal of the Electrochemical Society 1996, 143 (10), 3203-3213.
29. Bates, J. B.; Dudney, N. J.; Neudecker, B.; Ueda, A.; Evans, C. D., Thin-film lithium and lithium-ion batteries. Solid State Ionics 2000, 135 (1-4), 33-45.
30. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.;
Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat Mater 2011, 10 (9), 682-6.
31. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 627-631.
32. Sakuda, A.; Hayashi, A.; Tatsumisago, M., Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Sci Rep-Uk 2013, 3.
33. Vignarooban, K.; Kushagra, R.; Elango, A.; Badami, P.; Mellander, B. E.; Xu, X.; Tucker, T.
G.; Nam, C.; Kannan, A. M., Current trends and future challenges of electrolytes for sodium- ion batteries. Int J Hydrogen Energ 2016, 41 (4), 2829-2846.
34. Zhang, J. W.; Huang, X. B.; Wei, H.; Fu, J. W.; Huang, Y. W.; Tang, X. Z., Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic-organic hybrid polyphosphazene nanotubes as fillers. J Solid State Electr 2012, 16 (1), 101-107.
35. Cao, C. Y.; Wang, H. B.; Liu, W. W.; Liao, X. Z.; Li, L., Nafion membranes as electrolyte and separator for sodium-ion battery. Int J Hydrogen Energ 2014, 39 (28), 16110-16115.
36. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T., Na- ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science 2012, 5 (3), 5884-5901.
37. Wenzel, S.; Leichtweiss, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J., Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium beta-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. ACS Appl Mater Interfaces 2016.
38. Guin, M.; Tietz, F., Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries. Journal of Power Sources 2015, 273, 1056-1064.
39. Guin, M.; Tietz, F.; Guillon, O., New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3-xO12. Solid State Ionics 2016, 293, 18-26.