II. Modeling and Simulation of Terahertz Detector…
2.2 Simulation Results of Terahertz Detector
2.2.3 Noise Equivalent Power
For evaluate THz detector performance, noise parameter considered essential, which called noise equivalent power (NEP). Definition is, which is the incident power (sometimes per unit frequency range) producing a detector response equal to the noise voltage at the output of the device. NEP is calculated,
R N
V
NEP
(2.5)a
V
P
R Δu
(2.6)Pa is the actual AC power 200 nW [52]. As shown in Fig. 2-21(a) DC characteristic of each gate length of MOSFET (400 nm, 350 nm, 300 nm, 250 nm, 200 nm, and 150 nm), Vth is 0.18, 0.19, 0.2, 0.22, 0.228, and 0.25V respectively. In Fig. 2-21(b) shows that photorespnse results function gate voltage in each gate length, as we discussed in chapter 2.2.3 photoresponse is proportional to gate length. Figure. 2-19(c) shows that channel resistance (Rch) and noise (N), these two parameter described as:
kTR
chN 4
(2.7)D D
ch
I
R V
(2.8)where k is the boltzmann constant, Rch is channel resistance can be extracted in the MOSFET DC characteristic (Fig. 2-21(a)). NEP results show (Fig. 2-21(e)) that our NQS model as sensitive detectors of terahertz radiation.
-26-
Figure 2-21. Full protocol for determining Rv and NEP
-27-
Chapter 3
Summary and conclusion
In this thesis, I have reviewed the present of state-of-the-art in terahertz detectors, and established benchmarks for competitive performances, we have discussed the operation of plasma wave terahertz devices models of terahertz response based upon existing theory. In chapter1. We discussed THz, application, detector theory, in chapter2 we are discussed modeling and simulation method about the TCAD and the SPICE. Terahertz frequency regime is the beyond the MOSFET cut-off frequency, election variation cannot react THz radiation signal. And other theory we compare plasma wave transit time and oscillation. Oscillation period smaller than plasma wave transit time we need to non-quasi- static analysis is needed. The solution of the non-quasi-static modeling we are using the quasi-plasma 2DEG in TCAD platform, SPICE modeling use new Elmore model for non-quasi-static modeling. And describe the boundary condition. For conventional operate to THz detector boundary condition is essential thing, we using the capacitor between gate and drain. Lager capacitor (1 pF) is AC short between the gate and drain. In lager capacitor is the attenuation of the drain side signal that makes the ac short the drain side, and charge asymmetry in the source and drain. In the TCAD platform we using the external capacitor, SPICE simulation platform we using the BSIM intrinsic parameter set to lager cap for ac short gate and drain.
Simulation results part show that, using the transient simulation in mixed mode signal. We are extracted the photoresponse successfully. In the Eq. 1.26 shows that photoresponse peak value occurred in the subthreshold region we see the simulation results the peak value occurred in the sub-threshold regime. And photoresponse enhancement method for modeling effectiveness. Changing the physical of the MOSFET (thin-oxide, gate length) that results show the following Eq. 1.26
We modeled plasmonic THz detector in SPICE with NQS model. This SPICE modeling can be applied as a future work.
-28-
Chapter 4 Future Work
The purpose of the BSIM modeling is to the circuit simulation through a reliable model. Fig4.1 shows that the THz chip board for real time imaging. The THz chip board is consist of the 2×200 array of the THz detector. That each detector react terahertz wave, DC voltage output is happened than the output connected by multiplexer and dc amp connected. That the data is transmission to system, that is able to real time imaging.
Figure 4-1. Terahertz chip board
The block diagram terahertz chip board is cannot operate all of the terahertz as the same time. We using the de-multiplexer to select the on/off device. Multiplexer output is the DC voltage connect the MOSFET gate. So mixed signal is incident the detector that dc output is passing the multiplexer. And passing the dc amp. Actually, the whole system is the simulation able. It is able to cost, time effective development is available. Future work is apply to THz detector compact model in the simulation we can predict the response of the whole system and the, design concept is optimized.
Figure 4-2. Block diagram of the terahertz chip board
REFERENCES
1. Knap, W., Dyakonov, M., Coquillat, D., Teppe, F., Dyakonova, N., Łusakowski, J., ... & Otsuji, T. (2009). Field effect transistors for terahertz detection: physics and first imaging applications.
Journal of Infrared, Millimeter, and Terahertz Waves, 30(12), 1319-1337.
2. Ryzhii, V., Khmyrova, I., & Shur, M. (2002). Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations. Journal of applied physics, 91(4), 1875-1881.
3. Nishimura, T., Magome, N., Khmyrova, I., Suemitsu, T., Knap, W., & Otsuji, T. (2009).
Analysis of fringing effect on resonant plasma frequency in plasma wave devices. Japanese Journal of Applied Physics, 48(4S), 04C096.
4. Nishimura, T., Magome, N., & Otsuji, T. (2010). An intensity modulator for terahertz electromagnetic waves utilizing two-dimensional plasmon resonance in a dual-grating-gate high-electron-mobility transistor. Japanese Journal of Applied Physics, 49(5R), 054301.
5. Knap, W., Teppe, F., Dyakonova, N., Coquillat, D., & Łusakowski, J. (2008). Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission. Journal of Physics: Condensed Matter, 20(38), 384205.
6. Knap, W., Deng, Y., Rumyantsev, S., Lü, J. Q., Shur, M. S., Saylor, C. A., & Brunel, L. C.
(2002). Resonant detection of subterahertz radiation by plasma waves in a submicron field- effect transistor. Applied physics letters, 80(18), 3433-3435.
7. Peralta, X. G., Allen, S. J., Wanke, M. C., Harff, N. E., Simmons, J. A., Lilly, M. P., ... &
Eisenstein, J. P. (2002). Terahertz photoconductivity and plasmon modes in double-quantum- well field-effect transistors. Applied Physics Letters, 81(9), 1627-1629.
8. Morozov, S. V., Marem'yanin, K. V., Kuritsin, D. I., Sergeev, S. M., Antonov, A. V., Gavrilenko, L. V., ... & Gavrilenko, V. I. (2009, November). Relaxation of THz impurity photoconductivity in GaAs/InGaAsP and Ge/GeSi quantum well heterostructures. In Journal of Physics:
Conference Series (Vol. 193, No. 1, p. 012087). IOP Publishing.
9. Otsuji, T., Hanabe, M., & Ogawara, O. (2004). Terahertz plasma wave resonance of two- dimensional electrons in InGaP∕ InGaAs∕ GaAs high-electron-mobility transistors. Applied physics letters, 85(11), 2119-2121.
10. El Fatimy, A., Teppe, F., Dyakonova, N., Knap, W., Seliuta, D., Valušis, G., ... & Rumyantsev, S. (2006). Resonant and voltage-tunable terahertz detection in InGaAs∕ InP nanometer transistors. Applied physics letters, 89(13), 131926.
11. Knap, W., Kachorovskii, V., Deng, Y., Rumyantsev, S., Lü, J. Q., Gaska, R., ... & Brunel, L. C.
(2002). Nonresonant detection of terahertz radiation in field effect transistors. Journal of Applied Physics, 91(11), 9346-9353.
12. Dyakonov, M., & Shur, M. (1993). Shallow water analogy for a ballistic field effect transistor:
New mechanism of plasma wave generation by dc current. Physical review letters, 71(15), 2465.
13. Dyakonov, M., & Shur, M. (1996). Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. Electron Devices, IEEE Transactions on, 43(3), 380-387.
14. Lee, A. W., & Hu, Q. (2005). Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Optics letters, 30(19), 2563-2565.
15. Lee, A. W., Williams, B. S., Kumar, S., Hu, Q., & Reno, J. L. (2006). Real-time imaging using a 4.3-THz quantum cascade laser and a 320/spl times/240 microbolometer focal-plane array.
Photonics Technology Letters, IEEE, 18(13), 1415-1417.
16. Ojefors, E., Pfeiffer, U. R., Lisauskas, A., & Roskos, H. G. (2009). A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. Solid-State Circuits, IEEE Journal of, 44(7), 1968-1976.
17. Oda, N. (2010). Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging. Comptes Rendus Physique, 11(7), 496-509.
18. Dem’yanenko, M. A., Esaev, D. G., Knyazev, B. A., Kulipanov, G. N., & Vinokurov, N. A.
(2008). Imaging with a 90frames∕ s microbolometer focal plane array and high-power terahertz free electron laser. Applied physics letters, 92(13), 131116.
19. Pfeiffer, U. R., & Ojefors, E. (2008, September). A 600-GHz CMOS focal-plane array for terahertz imaging applications. In Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European (pp. 110-113). IEEE.
20. Lisauskas, A., Glaab, D., Roskos, H. G., Oejefors, E., & Pfeiffer, U. R. (2009, February).
Terahertz imaging with Si MOSFET focal-plane arrays. In SPIE OPTO: Integrated Optoelectronic Devices (pp. 72150J-72150J). International Society for Optics and Photonics.
21. Rogalski, A., & Sizov, F. (2011). Terahertz detectors and focal plane arrays. Opto-electronics review, 19(3), 346-404.
22. Pickwell, E., & Wallace, V. P. (2006). Biomedical applications of terahertz technology. Journal of Physics D: Applied Physics, 39(17), R301.
23. Lee, Y. S. (2009). Principles of Terahertz Science and Technology: Proceedings of the International Conference, Held in Mainz, Germany, June 5-9, 1979 (Vol. 170). Springer.
24. IEEE 802.15 WPANTM Terahertz Interest Group.
http://www.ieee802.org/15/pub/IGthz.html
25. Nagatsuma, T., & Hirata, A. (2004). 10-Gbit/s wireless link technology using the 120-GHz band. NTT Technical Review, 2(11), 58-62.
26. Nagatsuma, T., Hirata, A., Kukutsu, N., & Kado, Y. (2007, October). Multiplexed transmission of uncompressed HDTV signals using 120-GHz-band millimeter-wave wireless link. In Microwave Photonics, 2007 IEEE International Topical Meeting on (pp. 237-240). IEEE.
27. Yamaguchi, R., Hirata, A., Kosugi, T., Takahashi, H., Kukutsu, N., Nagatsuma, T., ... &
Nakayama, T. (2008). 10-Gbit/s MMIC wireless link exceeding 800 meters. In 2008 IEEE Radio and Wireless Symposium (pp. 695-698).
28. Tauk, R., Teppe, F., Boubanga, S., Coquillat, D., Knap, W., Meziani, Y. M., ... & Shur, M. S.
(2006). Plasma wave detection of terahertz radiation by silicon field effects transistors:
Responsivity and noise equivalent power. Applied Physics Letters, 89(25), 253511-253511.
29. Knap, W., Teppe, F., Meziani, Y., Dyakonova, N., Lusakowski, J., Boeuf, F., ... & Shur, M. S.
(2004). Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85(4), 675-677.
30. Stillman, W., Veksler, D., Elkhatib, T. A., Salama, K., Guarin, F., & Shur, M. S. (2008). Sub- terahertz testing of silicon MOSFET. Electronics Letters, 44(22), 1325-1327.
31. Pala, N., Teppe, F., Veksler, D., Deng, Y., Shur, M. S., & Gaska, R. (2005). Nonresonant detection of terahertz radiation by silicon-on-insulator MOSFETs. Electronics Letters, 41(7), 447-449.
32. Deng, Y., & Shur, M. S. (2003). Electron mobility and terahertz detection using silicon MOSFETs. Solid-State Electronics, 47(9), 1559-1563.
33. Łusakowski, J. (2007). Nanometer transistors for emission and detection of THz radiation.
Thin solid films, 515(10), 4327-4332.
34. Shur, M. S., & Ryzhii, V. (2003). Plasma wave electronics. International journal of high speed electronics and systems, 13(02), 575-600.
35. Gutin, A., Ytterdal, T., Kachorovskii, V., Muraviev, A., & Shur, M. (2013). THz spice for modeling detectors and nonquadratic response at large input signal. Sensors Journal, IEEE, 13(1), 55-62.
36. Gutin, A., Nahar, S., Hella, M., & Shur, M. (2013). Modeling terahertz plasmonic si fets with spice.
37. Gutin, A., Muraviev, A., Shur, M., Kachorovskii, V., & Ytterdal, T. (2012). Large signal analytical and SPICE model of THz plasmonic FET. In Lester Eastman Conference on High Performance Devices (LEC) (pp. 1-5).
38. Lisauskas, A., Pfeiffer, U., Ö jefors, E., Bolìvar, P. H., Glaab, D., & Roskos, H. G. (2009).
Rational design of high-responsivity detectors of terahertz radiation based on distributed self- mixing in silicon field-effect transistors. Journal of Applied Physics, 105(11), 114511.
39. Synopsys Sentaurus Device 3-D User Guide Version D-2010.03 (2010)
40. Ryu, M. W., Sung-Ho, K. I. M., Hwang, H. C., Kibog, P. A. R. K., & Kim, K. R. (2013).
Plasmonic terahertz wave detectors based on silicon Field-effect transistors. IEICE Transactions on Electronics, 96(5), 649-654.
41. Ryu, M. W., Park, K., Park, W. K., Han, S. T., & Kim, K. R. (2013, June). Plasmonic terahertz wave detector based on silicon field-effect transistors with asymmetric source and drain structures. In Device Research Conference (DRC), 2013 71st Annual (pp. 97-98). IEEE.
42. Cheng, Y., & Hu, C. (1999). MOSFET modeling & BSIM3 user’s guide. Springer.