• Tidak ada hasil yang ditemukan

10. State Feedback and Pole Placement

N/A
N/A
Protected

Academic year: 2024

Membagikan "10. State Feedback and Pole Placement"

Copied!
23
0
0

Teks penuh

(1)

System Control System Control

10. State Feedback and Pole Placement

Professor Kyongsu Yi

©2009 VDCL

©2009 VDCL

Vehicle Dynamics and Control Laboratory Seoul National University

Seoul National University

(2)

State Feedback

• State Feedback

• State Feedback

x Ax Bu u Kx

 

 

( )

x   A  BK x

( , ) A B

Controllable : arbitrary pole assignment

In general, full states are not available Observer.g ,

ˆ ˆ ( ˆ )

ˆ y Cx

x Ax Bu L y Cx

   

ˆ

( )

e x x e A LC e

 

 

( , ) A C

Observable : arbitrary pole assignment

x ˆ  x

ˆ 2n system x x

u Kx

x Ax Bu

  

 

 ˆ ˆ ( ˆ ) ˆ

x Ax Bu L y Cx y Cx

u Kx

   

 

2 eigenvalues. n

(3)

State Feedback Control and Pole Placement

K(s)

) (

) (

s A

s

u

B

e +

-

k

Location of closed loop poles are restricted in root locus.

Q: Is it possible to assign arbitrary closed loop poles?

A: Yes, If the system is controllable & all state variables are feed back single input system in controllable canonical form.

(4)

State Feedback Control and Pole Placement

0 1 0 0 0

 0 1 0 0    0

0 0 1 0 0 0

0 0 0

x x u

   

   

   

     

   

   

1 1

0 1 0

n n

1

a a

a

   

   

      

   

  

 

1 1

det( sI  A )  s

n

 a s

1 n

   a

n

 0

x u

r u x  AxBu x c

r

K K

1

u Kx r

x

  

 

1

2

1 2 3 3

[

n

]

x

k k k k x r

   

      

   

 x

   

 

(5)

State Feedback Control and Pole Placement

Closed loop System

[ ]

[ ]

x Ax B Kx r A BK x Br

   

  

[ ]

0 0

0 0

 

 

 

  

 

  

1

0 1 0 0

k k

n

 

 

 

 

 

  

 

0 0 1 

0

0 1

x Br

 

 

   

 

 

 

1 1

( a

n

k ) ( a k

n

)

 

     

    

(6)

State Feedback Control and Pole Placement

Closed loop Ch. Eq

1

1 1 2 1

( ) ( ) ( ) 0

n n

n n n

s  a  k s

   a

 k s  a  k 

1 2

1 2

{ , , } : Desired closed loop poles

: symmetric with respect to the real axis of s-plane

( )( ) ( ) 0

n

s s s

  

  

    

1 2

1 2

1 2 1 2 1 2

( )( ) ( ) 0

[ ( )] [ ] [( )(

m

n n n

n

s s s

s s s

  

  

 

 

           

1 2

1 2

) ( )] 0

0

n

n n n

c c cn

s a s a s a

 

     

1 ( 1 )

: State feed back control gain

n i i c n i

i

a k a

k

 

 

 
(7)

State Feedback Control and Pole Placement

Single-Input Controllable System not in controllable canonical form

1

2 1

,

, [

n

]

M M exist

x Ax Bu rank B AB A B A B n

  

 

1

a a a

1 2 1

1 2

1

1 0

0 0

n n

a a a

a

W a

 

 

 

  

 

 

  

1

1 1 1

1 0 0

c

a

T MW T

W M

x Tx

 

 

 

 

  

  

1 1

: Controllable Canonical form

c

c c

Tx ATx Bu

Tx T ATx T Bu A x B u

 

 

 

1

c c c

c c c

K

A x B u u K x V

K T

x V

  

  

Controllability  arbitrary

pole assignment.

Necessary and sufficient condition

(8)

State Feedback Control and Pole Placement

Discrete Time Case

( 1) ( ) ( ) , ( ) ( )

( ) ( )

x k Gx k Hu k u k Kx k

G HK x k

    

 

0 1 0 0

0 0 1

0 x k ( )

 

 

 

  

 ( )

1

0 0 0 0

Nilpotent matrix

 

 

 

 

  

Nilpotent matrix

- Characteristic Equation

( 0)( 0) ( 0) 0

z

n

  ( z 0)( z  0)  ( z   0) 0

( )

n

0

z z z z

G HK

    

 

- Dead beat responseDead beat response (Finite Settling Time control)(Finite Settling Time control)

( ) ( )

n

(0) 0 (0)

x n  G  HK x  for any x

In general, Dead beat response should not be attempted In general, Dead beat response should not be attempted with a small sampling time.

(9)

State Feedback Control and Pole Placement

Ex

m x

u 2

2

2 2( 1)

) 1 ( 1

 

z

z T ms

u x

If T=0.0000001 sec u

Q: Is X directly accessible for state feed back?

A: No in general A: No, in general.

(10)

State Feedback Control and Pole Placement

Observer / State estimator

ˆ;

ˆ

x state estimator x  x in some sense

Looks reasonable to replace

ˆ u   Kx by u   Kx

,

ˆ ˆ

x Ax Bu y Cx x Ax Bu

  

 

A B

+ -

e

x   Ax  Bu

Bu x A x ˆ   ˆ  e   x x ˆ

ˆ ˆ

( ) ( )

e x x

e x x A x x Ae

     

 

(11)

State Feedback Control and Pole Placement

If A is asymptotically stable, then If A is not stable, then e are t

lim ( ) 0

t

e t



 

x   Ax  Bu

+ e

x

c u

) ˆ ( ˆ ˆ

y y L

Bu x A x

 

-

x ˆ

c

ˆ ˆ ( ˆ ) ( ) ( ) ˆ

x   Ax  Bu  L cx cx   A  LC  A  LC x  Bu  LCx

( )

e   A  LC e

(12)

State Feedback Control and Pole Placement

System in obs. Canonical form

1 2

1 0 0

0 1 a

a

  

  

 

l

1

   

2 3

0 1

1

0 0

a

A a

a

 

  

 

 

 

 

 1 0 0 

C  

2

n

L l

l

   

  

   

0 0

a

n

  

 

1 1

( a l ) 1 0 0

 

 

  

2 2

( ) 0 1

1 a l

A LC

   

 

   

 

 

 

 

0 0

a

n

 

  

 

(A,C) observable Arbitrary pole assignment for (A-LC)

(13)

State Feedback Control / Observer

x Ax Bu y Cx

 

ˆ A ˆ B L ( ˆ )

 ( )

ˆ ˆ

ˆ

x Ax Bu L y y y Cx

u Kx r

   

  

x   Ax  Bu

+ e

x C u +

-

-

) ˆ ( ˆ ˆ

y y L

Bu x A x



xˆ C

k

ˆ

( )

x   Ax   B Kx  r

 ˆ ˆ ( ˆ ) ( ˆ )

x  Ax   B Kx   r L Cx Cx 

(14)

State Feedback Control / Observer

The order of the overall system is 2n  2n eigenvalues

ˆ _ ˆ

x A BK x B

d r

x LC A BK LC x B

dt

        

 

        

       

ˆ 0

ˆ e x x

x I x

e I I x

 

      

      

      ˆ

( )

( ) ( )

( )

x Ax B Kx BKx A BK x BK e e A LC e

     

   

  

 ( )

0 0

e A LC e

x A BK BK x B

d r

e A LC e

dt

 

          

        

       

(15)

State Feedback Control / Observer

- Eigenvalues are form - Eigenvalues are form

( )

det( ) det

0 ( )

d t( ( )) d t( ( ))

sI A BK BK

sI A

sI A LC

I A BK I A LC

  

 

       

det( ( )) det( ( ))

0

sI A BK sI A LC

observerpoles

    

- n eigenvalues = regulator poles

x Ax Bu u Kx

 

 

separation property

- Selection of Best

L

ˆ ˆ ( ˆ )

ˆ ( ) ˆ

x Ax Bu L y y x A LC x

   

 ( )

( )

x A LC x e A LC Ln

 

  

(16)

State Feedback Control / Observer

- In general

i) For fast error convergence Large

ii) If y is not reliable, contaminated by disturbance, and measurement small

L

L

-Thus,

i) Select several , is choose several pole locations of the observer ii) Simulation

iii) Ch th b t f th i i t f ll t f

L L

iii) Choose the best , from the view point of overall system performance.

L

Compromise between speedy response and sensitivity to disturbances and noise

Kalman Filter

Kalman Filter

(17)

State Feedback Control / Observer

ˆ x Ax Bu u Kx r

 

  

 ˆ ˆ ( ˆ ) x  Ax  Bu  L y  y

obsever controller r

y u

Cx y

Bu Ax x

xˆ

y compenstor

ˆ ˆ ( ˆ ) ( ˆ )

x   Ax   B ( Kx   r ) LC y Cx (  ) ˆ

( ) ( ) ( ( ))

ˆ( )

x Ax B Kx r LC y Cx

sI A BK LC x s L Y S

U K

   

     

1

ˆ( )

( ) ( )

U Kx s r

K sI A BK LC

Y

  

     

(18)

Discrete Time Observer

( 1) ( ) ( )

( ) ( )

x k G x k H u k y k Cx k

    

Observer

 

ˆ ( 1) ˆ ( ) ( ) ( ) ˆ ( )

ˆ ( ) ( ) ( )

( 1) ( ) ( )

e

e

x k G x k H u k K y k Cx k e k x k x k

e k G K C e k

      

 

  

 

( 1) ( ) ( )

ˆ( 1) is given in terms of (0), (1),..., ( )

e

y

e k G K C e k

x k y y y k

  

ˆ( 1| ) : estimate of ( 1) based on

k

k

y

x k  k x k  y

  

 x k ˆ(  1| k  1) : estimate of ( x k  1) ba 

sed on

1

ˆ ( 1| 1) ˆ ( 1| ) [ ( 1) ˆ ( 1| )] : Current Observer.

k

e

y

x k k x k k K y k Cx k k

 

        

(19)

Error Dynamics

( 1| ) ( 1) ˆ ( 1| )

( ) ( ) [ ( | ) ( )]

e k k x k x k k

Gx k Hu k Gx k k Hu k

    

   

ˆ ˆ

( ) [ ( | 1) [ ( ) ( | 1)]]

( ) ( | 1)

( 1| 1) ( 1) ˆ ( 1| 1)

e e

Gx k G x k k K Cx k Cx k k G I K C e k k

e k k x k x k k

     

   

      

*

(

e

) ( | )

e C

G K C G

I K C G e k k

 

  



 : ( ,

*

)Observable

arbitrary pole assignment G C

( : measurement noise)

y Cx n n

x Ax Bu

 

 

ˆ ˆ ( ˆ )

( )

y Cx n

x Ax Bu L y Cx e A LC e L n

 

    

   

: Optimal compromise between convergence speed and noise effects Kalman Filter.

  min [( E x  x ˆ ) (

T

x  x ˆ )]

u   Kx

(20)

Vector Differential

(1)   f ( )  

1 1 1

(1) ( ) :

n n n

f x x y

1 2

( ) ( ) ( )

f x f x f x

 

 

 

   

n

( ) f x

 

 

 

1 1 1

f f f

  

 

  x

1

 x

1

  x

1

 f

x

    

 

 

   

  

 

1 1

1 1

f f

x x

   

   

 

   

(2) R u R n n :  u n :  1 (2) R u  R n n :  , u n :  1

Ru R u

 

T T

T T

u R R u

R R

u u

 

              

(21)

Vector Differential

  

T

1

(3)

n n n n n

u R u

 

T

u Ru

T

T

u Ru 2 u u R

 

 

T

T

x u

T

x u x

u

 

1n n1

  u

T

T

u x

T

u x x

u

 

(22)

Review

1. Key Concepts - Modeling

- Control System Design - Controller Design

- Linear, Nonlinear Systems - Design Approach

2. System Representations

- Laplace Transform, Z-Transform

Graphical representation block diagram signal flow graph - Graphical representation, block diagram, signal flow graph - Transfer Function

- State Equation ( cont. discrete. ) - State Eq. T.F.

- Canonical forms - Canonical forms

- Solution of Linear state Eq. : cont. discrete.

- Discrete Representation of cont. time systems

- Relationships between cont. and discrete time eigenvalues - Sampling of cont time systems

- Sampling of cont. time systems

(23)

Review

3. Dynamic Properties of the L.T.I Systems - Stability. Definitions

- Routh stability Criterion - Bilinear Transformation - Lyapunov function

- Stability / In-stability theorems

- Controllability / Observability definitions : cont. discrete Sufficient Conditions for controllability and observability - Pole – Zero cancellations

4 Analysis and Design 4. Analysis and Design

- Root locus. Design concepts. Pole-Zero additions - Frequency response

- Nyquist stability Criterion - Lead – Lag compensators

- Robustness to modeling errors – Nyquist stability Criterion - MIMO Nyquist stability Criterion

- Singular values

- Pole placement – state feedback - Observer / State estimation - Discrete time current observer - Separation property

- LQ optimal control

Referensi

Dokumen terkait

Students’ and Teachers’ Attitude s toward the Teacher’s Corrective Feedback in Teaching Writing of English as a Foreign Language (A Case Study at Surabaya State

Gumilyov Eurasian National University; 1986-2001 – laboratory assistant, senior laboratory assistant, senior engineer at the NIS, assistant, senior lecturer, associate professor of the

Mohammed Ibrahim Saeed, Faculty of Medical Laboratory Sciences, National Ribat University, Burri 055, Khartoum, Sudan Email: [email protected] Abstract Bilharziasis is a