System Control System Control
10. State Feedback and Pole Placement
Professor Kyongsu Yi
©2009 VDCL
©2009 VDCL
Vehicle Dynamics and Control Laboratory Seoul National University
Seoul National University
State Feedback
• State Feedback
• State Feedback
x Ax Bu u Kx
( )
x A BK x
( , ) A B
Controllable : arbitrary pole assignmentIn general, full states are not available Observer.g ,
ˆ ˆ ( ˆ )
ˆ y Cx
x Ax Bu L y Cx
ˆ
( )
e x x e A LC e
( , ) A C
Observable : arbitrary pole assignmentx ˆ x
ˆ 2n system x x
u Kx
x Ax Bu
ˆ ˆ ( ˆ ) ˆ
x Ax Bu L y Cx y Cx
u Kx
2 eigenvalues. n
State Feedback Control and Pole Placement
K(s)
) (
) (
s A
s
u
B
e +
-
k
Location of closed loop poles are restricted in root locus.
Q: Is it possible to assign arbitrary closed loop poles?
A: Yes, If the system is controllable & all state variables are feed back single input system in controllable canonical form.
State Feedback Control and Pole Placement
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0 0
0 0 0
x x u
1 1
0 1 0
n n
1
a a
a
1 1
det( sI A ) s
n a s
1 n a
n 0
x u
r u x AxBu x c
r
K K
1
u Kx r
x
12
1 2 3 3
[
n]
x
k k k k x r
x
State Feedback Control and Pole Placement
Closed loop System
[ ]
[ ]
x Ax B Kx r A BK x Br
[ ]
0 0
0 0
1
0 1 0 0
k k
n
0 0 1
0
0 1
x Br
1 1
( a
nk ) ( a k
n)
State Feedback Control and Pole Placement
Closed loop Ch. Eq
1
1 1 2 1
( ) ( ) ( ) 0
n n
n n n
s a k s
a
k s a k
1 2
1 2
{ , , } : Desired closed loop poles
: symmetric with respect to the real axis of s-plane
( )( ) ( ) 0
n
s s s
1 2
1 2
1 2 1 2 1 2
( )( ) ( ) 0
[ ( )] [ ] [( )(
m
n n n
n
s s s
s s s
1 2
1 2
) ( )] 0
0
n
n n n
c c cn
s a s a s a
1 ( 1 )
: State feed back control gain
n i i c n i
i
a k a
k
State Feedback Control and Pole Placement
Single-Input Controllable System not in controllable canonical form
1
2 1
,
, [
n]
M M exist
x Ax Bu rank B AB A B A B n
1
a a a
1 2 1
1 2
1
1 0
0 0
n n
a a a
a
W a
1
1 1 1
1 0 0
c
a
T MW T
W M
x Tx
1 1
: Controllable Canonical form
c
c c
Tx ATx Bu
Tx T ATx T Bu A x B u
1
c c c
c c c
K
A x B u u K x V
K T
x V
Controllability arbitrary
pole assignment.
Necessary and sufficient condition
State Feedback Control and Pole Placement
Discrete Time Case
( 1) ( ) ( ) , ( ) ( )
( ) ( )
x k Gx k Hu k u k Kx k
G HK x k
0 1 0 0
0 0 1
0 x k ( )
( )
1
0 0 0 0
Nilpotent matrix
Nilpotent matrix
- Characteristic Equation
( 0)( 0) ( 0) 0
z
n ( z 0)( z 0) ( z 0) 0
( )
n0
z z z z
G HK
- Dead beat responseDead beat response (Finite Settling Time control)(Finite Settling Time control)
( ) ( )
n(0) 0 (0)
x n G HK x for any x
In general, Dead beat response should not be attempted In general, Dead beat response should not be attempted with a small sampling time.
State Feedback Control and Pole Placement
Ex
m x
u 2
2
2 2( 1)
) 1 ( 1
z
z T ms
u x
If T=0.0000001 sec u
Q: Is X directly accessible for state feed back?
A: No in general A: No, in general.
State Feedback Control and Pole Placement
Observer / State estimator
ˆ;
ˆ
x state estimator x x in some sense
Looks reasonable to replace
ˆ u Kx by u Kx
,
ˆ ˆ
x Ax Bu y Cx x Ax Bu
A B
+ -
e
x Ax Bu
Bu x A x ˆ ˆ e x x ˆ
ˆ ˆ
( ) ( )
e x x
e x x A x x Ae
State Feedback Control and Pole Placement
If A is asymptotically stable, then If A is not stable, then e are t
lim ( ) 0
t
e t
x Ax Bu
+ e
x
c u) ˆ ( ˆ ˆ
y y L
Bu x A x
-
x ˆ
cˆ ˆ ( ˆ ) ( ) ( ) ˆ
x Ax Bu L cx cx A LC A LC x Bu LCx
( )
e A LC e
State Feedback Control and Pole Placement
System in obs. Canonical form
1 2
1 0 0
0 1 a
a
l
1
2 3
0 1
1
0 0
a
A a
a
1 0 0
C
2n
L l
l
0 0
a
n
1 1
( a l ) 1 0 0
2 2
( ) 0 1
1 a l
A LC
0 0
a
n
(A,C) observable Arbitrary pole assignment for (A-LC)
State Feedback Control / Observer
x Ax Bu y Cx
ˆ A ˆ B L ( ˆ )
( )
ˆ ˆ
ˆ
x Ax Bu L y y y Cx
u Kx r
x Ax Bu
+ e
x C u +
-
-
) ˆ ( ˆ ˆ
y y L
Bu x A x
xˆ C
k
ˆ
( )
x Ax B Kx r
ˆ ˆ ( ˆ ) ( ˆ )
x Ax B Kx r L Cx Cx
State Feedback Control / Observer
The order of the overall system is 2n 2n eigenvalues
ˆ _ ˆ
x A BK x B
d r
x LC A BK LC x B
dt
ˆ 0
ˆ e x x
x I x
e I I x
ˆ
( )
( ) ( )
( )
x Ax B Kx BKx A BK x BK e e A LC e
( )
0 0
e A LC e
x A BK BK x B
d r
e A LC e
dt
State Feedback Control / Observer
- Eigenvalues are form - Eigenvalues are form
( )
det( ) det
0 ( )
d t( ( )) d t( ( ))
sI A BK BK
sI A
sI A LC
I A BK I A LC
det( ( )) det( ( ))
0
sI A BK sI A LC
observerpoles
- n eigenvalues = regulator poles
x Ax Bu u Kx
separation property- Selection of Best
L
ˆ ˆ ( ˆ )
ˆ ( ) ˆ
x Ax Bu L y y x A LC x
( )
( )
x A LC x e A LC Ln
State Feedback Control / Observer
- In general
i) For fast error convergence Large
ii) If y is not reliable, contaminated by disturbance, and measurement small
L
L
-Thus,
i) Select several , is choose several pole locations of the observer ii) Simulation
iii) Ch th b t f th i i t f ll t f
L L
iii) Choose the best , from the view point of overall system performance.
L
Compromise between speedy response and sensitivity to disturbances and noise
Kalman Filter
Kalman Filter
State Feedback Control / Observer
ˆ x Ax Bu u Kx r
ˆ ˆ ( ˆ ) x Ax Bu L y y
obsever controller r
y u
Cx y
Bu Ax x
xˆ
y compenstor
ˆ ˆ ( ˆ ) ( ˆ )
x Ax B ( Kx r ) LC y Cx ( ) ˆ
( ) ( ) ( ( ))
ˆ( )
x Ax B Kx r LC y Cx
sI A BK LC x s L Y S
U K
1
ˆ( )
( ) ( )
U Kx s r
K sI A BK LC
Y
Discrete Time Observer
( 1) ( ) ( )
( ) ( )
x k G x k H u k y k Cx k
Observer
ˆ ( 1) ˆ ( ) ( ) ( ) ˆ ( )
ˆ ( ) ( ) ( )
( 1) ( ) ( )
e
e
x k G x k H u k K y k Cx k e k x k x k
e k G K C e k
( 1) ( ) ( )
ˆ( 1) is given in terms of (0), (1),..., ( )
e
y
e k G K C e k
x k y y y k
ˆ( 1| ) : estimate of ( 1) based on
k
k
y
x k k x k y
x k ˆ( 1| k 1) : estimate of ( x k 1) ba
sed on
1ˆ ( 1| 1) ˆ ( 1| ) [ ( 1) ˆ ( 1| )] : Current Observer.
k
e
y
x k k x k k K y k Cx k k
Error Dynamics
( 1| ) ( 1) ˆ ( 1| )
( ) ( ) [ ( | ) ( )]
e k k x k x k k
Gx k Hu k Gx k k Hu k
ˆ ˆ
( ) [ ( | 1) [ ( ) ( | 1)]]
( ) ( | 1)
( 1| 1) ( 1) ˆ ( 1| 1)
e e
Gx k G x k k K Cx k Cx k k G I K C e k k
e k k x k x k k
*
(
e) ( | )
e C
G K C G
I K C G e k k
: ( ,
*)Observable
arbitrary pole assignment G C
( : measurement noise)
y Cx n n
x Ax Bu
ˆ ˆ ( ˆ )
( )
y Cx n
x Ax Bu L y Cx e A LC e L n
: Optimal compromise between convergence speed and noise effects Kalman Filter.
min [( E x x ˆ ) (
Tx x ˆ )]
u Kx
Vector Differential
(1) f ( )
1 1 1
(1) ( ) :
n n n
f x x y
1 2
( ) ( ) ( )
f x f x f x
n
( ) f x
1 1 1
f f f
x
1 x
1 x
1 f
x
1 1
1 1
f f
x x
(2) R u R n n : u n : 1 (2) R u R n n : , u n : 1
Ru R u
T T
T T
u R R u
R R
u u
Vector Differential
T1
(3)
n n n n n
u R u
T
u Ru
T
Tu Ru 2 u u R
T
T
x u
Tx u x
u
1n n1
u
T
T
u x
Tu x x
u
Review
1. Key Concepts - Modeling
- Control System Design - Controller Design
- Linear, Nonlinear Systems - Design Approach
2. System Representations
- Laplace Transform, Z-Transform
Graphical representation block diagram signal flow graph - Graphical representation, block diagram, signal flow graph - Transfer Function
- State Equation ( cont. discrete. ) - State Eq. T.F.
- Canonical forms - Canonical forms
- Solution of Linear state Eq. : cont. discrete.
- Discrete Representation of cont. time systems
- Relationships between cont. and discrete time eigenvalues - Sampling of cont time systems
- Sampling of cont. time systems
Review
3. Dynamic Properties of the L.T.I Systems - Stability. Definitions
- Routh stability Criterion - Bilinear Transformation - Lyapunov function
- Stability / In-stability theorems
- Controllability / Observability definitions : cont. discrete Sufficient Conditions for controllability and observability - Pole – Zero cancellations
4 Analysis and Design 4. Analysis and Design
- Root locus. Design concepts. Pole-Zero additions - Frequency response
- Nyquist stability Criterion - Lead – Lag compensators
- Robustness to modeling errors – Nyquist stability Criterion - MIMO Nyquist stability Criterion
- Singular values
- Pole placement – state feedback - Observer / State estimation - Discrete time current observer - Separation property
- LQ optimal control