System Control System Control
7. Root Locus Analysis
Professor Kyongsu Yi
©2009 VDCL
©2009 VDCL
Vehicle Dynamics and Control Laboratory Seoul National University
Seoul National University
Characteristic Equation
K
CG (s )
R C
) (
) ) (
( A s
s s B
G
) ( )
( s K B s
G K C
) ( )
(
) ( )
( 1
) (
s B K s A
s B K s
G K
s G K R
C
C C C
C
Characteristic Equationq : AA((ss)) KKCCBB((ss))00
Transient response
Characteristic roots, poles
Characteristic roots
) 1 (s
G( ) ( ) b ms s s
G
Characteristic Equation : ms2 bsKC 0 mK b
b 2 4 m
mK b
s b C
2
4
0
KC b, 0
s
Im
C m
KC b 4
2
m
s b 2
double roots x x x Re m KC b
4
2
C m
4 2m
KC b
2
b mK b j
s 4 C 2
0 KC
3
C m
4 j
m
m 2
2
KC
Characteristic roots
2 bsKC 0 ms
1 0
1 2
s K bs m
C
s m
R
1m 1
s2
K bs C
R
C
1 1 ( )
0 1 0
( ) B s m m A s
0 ) 1 ( )
( B
A( ) B(s)0 s m
A
0 ) (s A
0
s ; double roots
m
1 1 ( ) 0
)
( B s
s m A
0 ) ( B(s)0 B
Characteristic roots
) 0 (
)
1 (
s A
s KC B
0 ) ( )
(s K B s
A C
0 ) (
) (
) (
) ) (
( 1
ni m
j
i
p s
z s s
A s s B
G
) (
1
ipi
s
0 ) (
) (
1 1
m j
i C
m i
i K s z
p s
openloop poles openloop zeros
0
KC ( ) 0
1
m i
pi
s
closed loop poles=open loop poles
1
KC ( ) 0
1
m j
zi
s
closed loop poles=open loop poles
m j
zi
s s
B 1
) 1 (
)
( l ti
5
n
i
i j
C s p
K s
A
1
) ) (
( )
( real, negative
s : complex number
Characteristic roots
1
2
1
2
j j x
j j y
x r e x e
y r e y e
y
Im x
y r e
2y e
2
1
Re
1 2
( )
1 2
x y r r e
j 1 2
( )
1 2
r
jx e
y r
1 2
( ) y
x y x y
x y x y
x x
y y
x x y
x y
y
m
)
(n p
s z
s p
s z
s n
i
i m
j n i
i
i j
i
360
180 )
( )
( )
(
) (
1 1
1
1
Characteristic roots
( ) ( ) 0
( ) ( ) 0
( )
C
c
A s K B s A s K B s B s
1
KC
( ) 0
( ) 0
( )
cB s m roots
A s K n m roots B s
( )
B s
0 )
(
) (
1
n c m ji
K p
s z
s n-m=2 n-m=3
) (
1
i
pi
s
1 0
1
c n
i
n i n
K s
p
s
1
1
c
m j
m i
m z s
s
1 0
1 1
n
n m ci
m j
i i
m
n p z s K
s
1 1
i j
1 1 0
c m n n
i
m j
i i
m K n
z p
s n m
z p
K s
n i
m j
i i
m cn m n
1 1 1 1
) 1 (
7
n m ej n m n
1 2 1
1 )
1 (
complex real
Root – Locus Method
• Graphically obtains closed-loop poles as function of a parameter in feedback system.
) (s B
) ( )
(
) ( )
( ) 1 (
) (
) (
s B K s A
s B K s
A s K B
s A
s K B C
R
closed-loop poles : (characteristic roots) 0
) ( )
(s KB s A
0 ) (s
A( ) ; open-loop poles ; p p p pi 0
) (s
B ; open-loop zeros zi 0
) (
) (
1
n i
i
p s s
A
1 i
0 ) (
) (
1
i m
i
z s s
B Where, nm
0 ) (
)
(
n(s pi) K m(s zi)
1
1
i
i i i
p
Root – Locus Method
1) K=0
: closed-loop poles = open-loop poles closed-loop characteristic eq. ;
closed-loop poles are asymptotic to open-loop poles for small K
2) K>>1 2) K>>1
0 ) (
B s K
0 ) ( )
(s K B s A(s)KB(s)0 A
( ) ( ) 0 ( )
A s K B s
B s
(n-m)-poles m-poles
m closed-loop poles are asymptotic to open-loop zeros n-m poles
9
Root – Locus Method
n-m Poles
0 )
(
) (
1
K
p s
m
i n
i
) (
1
s zi
i
0
1
1
K
s p s
m
n i n i n
1 1
p s
s i m
m i m
1
0
1 1
p z s K
s
i n mm i i n i m n
1
1
i i(approximation) 0
1
1
K
m n
z p
s
m n i m i i n i
m n i
m i i n
i K
z p
s
1 1 ( ) 1
m n
m n m n i
m i i n
i K
m n
z p
1 1
1
1 ( 1)
) 2 1
1ei( N
N 1,2,3
m n N m i
n e
(1 2 ) /
1
) 1
(
real image
Root – Locus Method
1
m
n ( 1)1 1
1
11
Root – Locus Method
N i N i
i e e
e (1 2 ) /2 2 2
2 1
) 1 (
2
m n
Root – Locus Method
3
m
n
i i
N
i e e
e ,
) 1
( 3 (1 2 ) /3 3
1
13
Root – Locus Method
4
m
n e i e 4i
3 4 4 1
, )
1 (
Root – Locus Method
Example)
nm3 n m poles15
Root – Locus Method
Angle condition
( ) ( ) 0
A s K B s
1 1
( ) ( ) 0
1 ( ) 0
n m
i i
i i
s p K s z
K B s
1 ( ) 0
( )
( ) 1
( ) K B s
A s
B s
A K
1
( )
( ) 1
m i i
n
A s K
s z
K
( )
m
s z
1
( )
n i i
s p K
real negative
1
1 1
1
( )
( ) ( )
( )
( ) ( )
m n
i i
i i
n i i
i i
m n
s z
s z s p
s p
1 1
( ) ( )
180 360 360
180(1 2 ) 1, 2, 3
i i
i i
s z s p
N N
Root – Locus Method
3) Real axis
( ) 1
B s B s( ) n n
( ) ,
( )
A s K
1 1
( ) ( ) ( ) 100(1 2 )
( ) i i i i
B s s Z s P N
A s
17
Root – Locus Method
Example)
4 open-loop poles, 1 open loop zero Root Roci in the real axis
1
1 2
180
360 s z
s p s p
X
3 180
s p
X X
X O
4
4
0
( ) ( ) 360
s p
X
1
( i) ( i) 360
i
s z s p
; Segments which have an odd number of open loop poles & zeros lying to the right on the real axis become portions of the root locus
Root – Locus Method
Portions of the root locus
n-m=3
19
Root – Locus Method
4) Angle of departure
) 2 1 ( 180 )
( ) (
1 1
N p
s z
s i
n i i m
i
) (
) (
) (
) (
)
(p z p p s p p p p p
(p2 z1)(p2 p1)(s p2)(p2 p3)(p2 p4)
) (
) (
) (
) (
) 2 1 ( 180 )
(s p2 N p2 z1 p2 p1 p2 p3 p2 p4
Root – Locus Method
n=2, m=1 )
(s
R C(s)
K )
(s
R C(s)
( 1)1
p s s
z s
)
21
1 (
1 1
p s s
z K s
Root – Locus Method
5) Double root
s=bCharacteristic eq (s b)2( )0 Characteristic eq. (s b) ( )0
sb 0 dsd
At double root
0 ) ( )
(s KB s
A
) (
) (
s B
s K A
( ) ( )
dA ( ) dB ( ) 0 ( ) ( ) ( )
( ) 0 dA s dB s
ds K ds
dA s A s dB s ds B s ds
( )
( ) ( )
( ) ( ) 0
ds B s ds
dA s dB s
B s A s
ds
ds
Root – Locus Method
• Positioning system
m
x
u m b:Lubrication oil
P control P control
Kc
) (s
R X(s)
1
( )
s ms b
) (s U
) 0 (
1 1
Kc b
) (ms b
c s
) (
)
(s s ms b
A B(s)1 n=2 m=0 Open loop poles : 0,
m
b
23
Root – Locus Method
I control
) (s
R 1 X(s)
( )
s ms b
) (s U s
Ki
1 1 0
( )
Ki
s s ms b
s s ms b( )2
1 1 0
( )
Ki
s ms b
n=3 m=0 Open loop poles :
m
b 0 , 0
double loot
angle of departure
) 2 1 ( 180 )
( ) (
1 1
N p
s z
s i
n i i m
i
) 2 1 ( 180 )
( ) (
)
( N
( ) ( ) ( ) 180(1 2 ) (s p )90
3 2
1 s p s p N
p
s
90 ) ( 1
s p
Root – Locus Method
PI control
) (s
R 1 X(s)
( )
s ms b
) (s U
s K T
i c
1 1
i ( ) 0) (
1
1 1
b ms s s T
s K T
i i
c n=3 m=1 n-m=2
Open loop zero : T
1 Open loop pole : 0, 0,
m
b Ti
25
Root – Locus Method
PID control
- Mass change, - PI, I gain variation )
(s
R X(s)
1
( )
s ms b
) (s
1 U
(1 )
C d
i
K T S
T S
1
21
1 0
( )
i d
C
T s T s
K T b
2 Open loop zeros
( )
C
T s
is ms
b
p pm
b , 0 ,
3 Open loop poles : 0
Root – Locus Method
2
0
ms bs K
1 1 bs K
C 0
Example)
1
20
m s
27
Root – Locus Method
Minimum phase systems:
시스템의 모든 pole과zero가 LHP에 있는 경우
Non minimum phase systems:
적어도 시스템의 한 개의pole이나 zero가 평면의 RHP에 있는 경우
(1 )
( ) ( 1)
K T s
dG s s Ts
(1 )
1 0
( 1)
T sd
K s Ts
1 1
( 1) T s
ds Ts K