• Tidak ada hasil yang ditemukan

7. Root Locus Analysis

N/A
N/A
Protected

Academic year: 2024

Membagikan "7. Root Locus Analysis"

Copied!
28
0
0

Teks penuh

(1)

System Control System Control

7. Root Locus Analysis

Professor Kyongsu Yi

©2009 VDCL

©2009 VDCL

Vehicle Dynamics and Control Laboratory Seoul National University

Seoul National University

(2)

Characteristic Equation

K

C

G (s )

R  C

) (

) ) (

( A s

s s B

G

) ( )

( s K B s

G K C

) ( )

(

) ( )

( 1

) (

s B K s A

s B K s

G K

s G K R

C

C C C

C

 

 

Characteristic Equationq : AA((ss)) KKCCBB((ss))00

Transient response

Characteristic roots, poles

(3)

Characteristic roots

) 1 (s

G( ) ( ) b ms s s

G  

Characteristic Equation : ms2bsKC 0 mK b

b2 4 m

mK b

s b C

2

4



0

KC b, 0

s 

Im

C m

KC b 4

2

m

s b 2

 double roots x x x Re m KC b

4

2

C m

4 2m

KC b

2

b mK b j

s 4 C2

 

0 KC

3

C m

 4 j

m

m 2

2

KC

(4)

Characteristic roots

2bsKC 0 ms

1 0

1 2

s K bs m

C

s m

R 

1

m 1

s2

K bsC

R

C

1 1 ( )

0 1 0

( ) B s m   m A s

0 ) 1 ( )

(  B

A( ) B(s)0 s m

A

0 ) (sA

0

s ; double roots

m

1 1 ( ) 0

)

(  B s

s m A

0 ) ( B(s)0 B

(5)

Characteristic roots

) 0 (

)

1 ( 

s A

s KC B

0 ) ( )

(sK B s

A C

0 ) (

) (

) (

) ) (

( 1

n

i m

j

i

p s

z s s

A s s B

G

) (

1

i

pi

s

0 ) (

) (

1 1

m j

i C

m i

i K s z

p s

openloop poles openloop zeros

0

KC ( ) 0

1

m i

pi

s

closed loop poles=open loop poles

1

KC ( ) 0

1

m j

zi

s

closed loop poles=open loop poles

m

j

zi

s s

B 1

) 1 (

)

( l ti

5

n

i

i j

C s p

K s

A

1

) ) (

( )

( real, negative

s : complex number

(6)

Characteristic roots

1

2

1

2

j j x

j j y

x r e x e

y r e y e

 

 

y

Im x

y r e

2

y e

2

1

Re

1 2

( )

1 2

x y    r r e

j  

1 2

( )

1 2

r

j

x e

y r

 

1 2

( ) y

x y x y

x y x y

  

    

x x

y y

x x y

    

x y

y

 

m

)

(

n p

s z

s p

s z

s n

i

i m

j n i

i

i j

i

360

180 )

( )

( )

(

) (

1 1

1

1        

 

(7)

Characteristic roots

( ) ( ) 0

( ) ( ) 0

( )

C

c

A s K B s A s K B s B s

 

 

 

 

 

1

KC

( ) 0

( ) 0

( )

c

B s m roots

A s K n m roots B s

  

   

( )

B s

0 )

(

) (

1  

n c m j

i

K p

s z

s n-m=2 n-m=3

) (

1

i

pi

s

1 0

1

 



 

 

c n

i

n i n

K s

p

s

1

1

 

 

c

m j

m i

m z s

s

1 0

1 1



 

 

n

n m c

i

m j

i i

m

n p z s K

s

1 1

i j

1 1  0

















 

c m n n

i

m j

i i

m K n

z p

s n m

z p

K s

n i

m j

i i

m cn m n

 

1 1 1 1

) 1 (

7



  

 

n m ej n m n

1 2 1

1 )

1 (

complex real

(8)

Root – Locus Method

• Graphically obtains closed-loop poles as function of a parameter in feedback system.

) (s B

) ( )

(

) ( )

( ) 1 (

) (

) (

s B K s A

s B K s

A s K B

s A

s K B C

R

 

closed-loop poles : (characteristic roots) 0

) ( )

(sKB sA

0 ) (s

A( ) ; open-loop poles ; p p p pi 0

) (s

B ; open-loop zeros zi 0

) (

) (

1  

n i

i

p s s

A

1 i

0 ) (

) (

1  

i m

i

z s s

B Where, nm

0 ) (

)

(     

n(s pi) K m(s zi)

1

1

i

i i i

p

(9)

Root – Locus Method

1) K=0

: closed-loop poles = open-loop poles closed-loop characteristic eq. ;

 closed-loop poles are asymptotic to open-loop poles for small K

2) K>>1 2) K>>1

0 ) ( 

B s K

0 ) ( )

(sK B s A(s)KB(s)0 A

( ) ( ) 0 ( )

A s K B s

B s

 

  

 

 

(n-m)-poles m-poles

m closed-loop poles are asymptotic to open-loop zeros n-m poles

9

(10)

Root – Locus Method

n-m Poles

0 )

(

) (

1  

K

p s

m

i n

i

) (

1

s zi

i

0

1

1  

 

 



K

s p s

m

n i n i n

1 1

 

 



p s

s i m

m i m

1

0

1 1



 

 

   

p z s K

s

i n m

m i i n i m n

1

1

i i

(approximation) 0

1

1  











 

 

K

m n

z p

s

m n i m i i n i





m n i

m i i n

i K

z p

s   

 

 

1 1 ( ) 1

m n

m n m n i

m i i n

i K

m n

z p

  



 

 

1 1

1

1 ( 1)

) 2 1

1ei( N

N 1,2,3

m n N m i

ne

(1 2 ) /

1

) 1

(

real image

(11)

Root – Locus Method

1

m

n ( 1)1 1

1

11

(12)

Root – Locus Method

N i N i

i e e

e (1 2 ) /2 2 2

2 1

) 1 (

 

 

2

m n

(13)

Root – Locus Method

3

m

n

i i

N

i e e

e ,

) 1

( 3 (1 2 ) /3 3

1

13

(14)

Root – Locus Method

4

m

n e i e 4i

3 4 4 1

, )

1 (

(15)

Root – Locus Method

Example)

nm3 n m poles

15

(16)

Root – Locus Method

Angle condition

( ) ( ) 0

A s  K B s

1 1

( ) ( ) 0

1 ( ) 0

n m

i i

i i

s p K s z

K B s

    

1 ( ) 0

( )

( ) 1

( ) K B s

A s

B s

A K

 

 

1

( )

( ) 1

m i i

n

A s K

s z

K

 

  ( )

m

s z

 

1

( )

n i i

s p K

 

real negative

1

1 1

1

( )

( ) ( )

( )

( ) ( )

m n

i i

i i

n i i

i i

m n

s z

s z s p

s p

       

 

 

1 1

( ) ( )

180 360 360

180(1 2 ) 1, 2, 3

i i

i i

s z s p

N N

     

   

    

(17)

Root – Locus Method

3) Real axis

( ) 1

B s B s( ) n n

 

( ) ,

( )

A s  K

1 1

( ) ( ) ( ) 100(1 2 )

( ) i i i i

B s s Z s P N

A s

 

   

 

17

(18)

Root – Locus Method

Example)

4 open-loop poles, 1 open loop zero Root Roci in the real axis

1

1 2

180

360 s z

s p s p

  

     

X

3 180

s p

   X X

X O

4

4

0

( ) ( ) 360

s p

  

 

X

1

( i) ( i) 360

i

s z s p

       

; Segments which have an odd number of open loop poles & zeros lying to the right on the real axis become portions of the root locus

(19)

Root – Locus Method

Portions of the root locus

n-m=3

19

(20)

Root – Locus Method

4) Angle of departure

) 2 1 ( 180 )

( ) (

1 1

N p

s z

s i

n i i m

i

) (

) (

) (

) (

)

(pz  pp  sp  pp  pp

(p2z1)(p2p1)(sp2)(p2p3)(p2p4)

) (

) (

) (

) (

) 2 1 ( 180 )

(sp2   N  p2z1  p2p1  p2p3  p2p4

(21)

Root – Locus Method

n=2, m=1 )

(s

RC(s)

K )

(s

RC(s)

( 1)

1

p s s

z s

)

21

1 (

1 1

p s s

z K s

 

(22)

Root – Locus Method

5) Double root

s=b

Characteristic eq (sb)2( )0 Characteristic eq. (s b) ( )0

sb 0 ds

d

At double root

0 ) ( )

(sKB s

A

) (

) (

s B

s K A

( ) ( )

dA ( ) dB ( ) 0 ( ) ( ) ( )

( ) 0 dA s dB s

ds K ds

dA s A s dB s ds B s ds

 

 

( )

( ) ( )

( ) ( ) 0

ds B s ds

dA s dB s

B s A s

ds

ds

(23)

Root – Locus Method

• Positioning system

m

x

u m b:Lubrication oil

P control P control

Kc

) (s

RX(s)

1

( )

s ms b

) (s U

) 0 (

1 1 

Kc b

) (msb

c s

) (

)

(s s ms b

A   B(s)1 n=2 m=0 Open loop poles : 0,

m

b

23

(24)

Root – Locus Method

I control

) (s

R1 X(s)

( )

s ms b

) (s U s

Ki

1 1 0

( )

Ki

s s ms b

s s ms b( )

2

1 1 0

( )

Ki

s ms b

n=3 m=0 Open loop poles :

m

b 0 , 0

double loot

angle of departure

) 2 1 ( 180 )

( ) (

1 1

N p

s z

s i

n i i m

i

) 2 1 ( 180 )

( ) (

)

(    N

( ) ( ) ( ) 180(1 2 ) (s p )90

3 2

1 s p s p N

p

s      

90 ) (  1

s p

(25)

Root – Locus Method

PI control

) (s

R1 X(s)

( )

s ms b

) (s U



 

  s K T

i c

1 1

i ( ) 0

) (

1

1 1 

 

b ms s s T

s K T

i i

c n=3 m=1 n-m=2

Open loop zero : T

1 Open loop pole : 0, 0,

m

b Ti

25

(26)

Root – Locus Method

PID control

- Mass change, - PI, I gain variation )

(s

RX(s)

1

( )

s ms b

) (s

1 U

(1 )

C d

i

K T S

T S

1

2

1

1 0

( )

i d

C

T s T s

K T b

    2 Open loop zeros

( )

C

T s

i

s ms

b

p p

m

b , 0 ,

3 Open loop poles : 0

(27)

Root – Locus Method

2

0

ms  bs  K 

1  1 bs  K

C

 0

Example)

1

2

0

m s

 

27

(28)

Root – Locus Method

Minimum phase systems:

시스템의 모든 polezero LHP에 있는 경우

Non minimum phase systems:

적어도 시스템의 한 개의pole이나 zero가 평면의 RHP에 있는 경우

(1 )

( ) ( 1)

K T s

d

G s s Ts

 

(1 )

1 0

( 1)

T sd

K s Ts

  

1 1

( 1) T s

d

s Ts K

 

Referensi

Dokumen terkait

Suatu metode yang digunakan untuk memetakan akar-akar dari persamaan karakteristik adalah dengan metode Root-Locus, dimana dengan metode ini akar-akar persamaan karakteristik

Pada gambar dapat dilihat bahwa diagram Root Locus yang dihasilkan oleh open loop sistem pengendalian temperature pada direct contact heater sama seperti diagram

dengan locus of control adalah penelitian Dian Agustia (2009) yang mengemukakan di dalam penelitiannya bahwa locus of control memiliki pengaruh yang kuat dan

Suatu metode yang digunakan untuk memetakan akar-akar dari persamaan karakteristik adalah dengan metode Root-Locus, dimana dengan metode ini akar-akar persamaan karakteristik

dengan locus of control adalah penelitian Dian Agustia (2009) yang mengemukakan di dalam penelitiannya bahwa locus of control memiliki pengaruh yang kuat dan

Refrigeration System & Control Laboratory , Seoul National University 2.4 Hardness and ductility  Scratch hardness Scratch hardness tests are used to determine the hardness of a

Refrigeration System & Control Laboratory , Seoul National University 6.7 Vapor-pressure thermometer The vapor pressuresaturation pressure is a definite function of the temperature of

* Assistant Professor, Department of Geography, Col1ege of Social Science, Seoul National University ** Graduate School, Department of Geography, Seoul National University ***