• Tidak ada hasil yang ditemukan

Brief Introduction to Photonic Crystals

N/A
N/A
Protected

Academic year: 2024

Membagikan "Brief Introduction to Photonic Crystals"

Copied!
34
0
0

Teks penuh

(1)

Byoungho Lee

School of Electrical Engineering Seoul National University

[email protected]

(2)

Nano

(3)

Photonic crystals

(4)

Scattering

(5)

No light propagation for certain wavelengths:

a photonic bandgap

Periodic medium

(6)
(7)
(8)

Periodic electromagnetic media Photonic bandgap: optical insulator

requires complex topology

Photonic crystals

(9)

Light cavities Light waveguides (‘wires’)

Periodic electromagnetic media Photonic bandgap: optical insulator

Photonic crystals

(10)

(a) (b) (c)

(d) (e) (f)

a : guide b : sharp bend c : add/drop

d : Y-coupler e : filter f : dispersive element

Photonic bandgap waveguides

(11)

Photonic bands

(12)

3D photonic crystals – photonic bandgap

(13)

(a) (b) (c)

a : PCF (TIR) ⇐ very strong core-cladding index contrast enhanced

⇐ (ESM) ⇐ large bending loss b : Air-clad core ⇐ highly dispersive ⇐ DCF

c : PBGF ⇐ too lossy (~1dB/m) ⇐ still has a potential for the future

Photonic crystal fibers

(14)

Photonic crystal fibers

J. C. Knight, Nature, 424, pp. 847-851, 2003.

Photonic crystal fibers

(15)

클래딩 지름 80μm 유효 코어 모드 지름 11.5 μm 전송 손실 (1550nm) 0.35dB/km

허용 곡률 반경 7.5mm

벤딩 손실 (1550nm)

φ 15mm × 10 turn <0.1dB

Mitsubishi Cable

Fujikura

FutureGuide®-SR15

→허용 곡률 반경 15 mm

Holey fibers

(16)

Vectorial diffractive optics

‰ Concepts of Maxwell equation analysis FDTD, RCWA, PFMA

‰ Surface plasmon analysis

Surface plasmon resonance, excitation by finite beam and pulses, 3D metallic structures

‰ Photonic crystal analysis

(17)

FDTD is a rigorous analysis method with widely applications from nano- to all length-scales using the Maxwell’s equations and curl equations

(i,j,k) (i,j,k+1)

Ez

(i,j+1,k)

(i -1,j+1,k)

Hz

Hx

Hy

Ez Ez

Ez

Ex E x

Ex

Hz

Ey E

y

Ey Ey

Hy

Hx z

1 *

y z x

y y

y

H E E

t x z σ H

μ

= 1 y *

x z

x x

x

H E E

t z y σ H

μ

=

1 x y *

z

z z

z

E E

H H

t y x σ

μ

=

1 x y

z

z z z

H H

E E

t y x σ

ε

=

y 1 z x

y y y

E H H

t x z σ E

ε

=

1 y

x z

x x x

E H H

t z y σ E

ε

=

Finite-difference time-domain (FDTD) method

(18)

Finite-difference time-domain (FDTD) method

( ) ( ) ( ) ( ) ( ) ( )

⎟⎟

⎜⎜ +

+

=

+ H i j H i j

j c i

H j i

c H j i D j i

D yn xn xn

n y n

z n

z 0.5 , 0.5 , 0.5, 0.5, , 0.5 , 0.5

2D Yee’s cell : interleaving mesh

(19)

‰

Numerical methods for EM wave solution

9 Numerical methods for solving the electromagnetic wave propagation problems

FEM, MOM, BPM, TLM, FDTD (which is the post popular)

Yee used centered finite-difference expressions for the space and time derivatives that are both simply programmed and have second-order accuracy in the space and time increments.

9 Advantages of FDTD

Problems exhibiting complex structures

Only one computation is required to get the frequency domain results over a large frequency spectrum.

FDTD method does not need to solve any integral and matrix equations.

It is conceptually simple and simple to code.

It is applicable to a large class of problems.

However, it needs very large computer memories.

Finite-difference time-domain (FDTD) method

(20)

‰

FDTD applications

9 Waveguides and nano-photonics

Solitons

Mingaleev and Kivshar, Optics and Photonics News, July 2002.

Prather, Optics and Photonics News, June 2002.

Defect cavities and defect mode lasers

Painter et al., Science, June 11, 1999.

Waveguides coupled to disks and rings

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, IEEE J. Lightwave Tech., 1997.

Finite-difference time-domain (FDTD) method

(21)

Ex – component Ey – component

Extension to three-dimensional solid immersion lens nano-focusing for high

density optical memory

Solid immersion lens simulation (FDTD)

(22)

FDTD example

(FS) N=1.457

Cr 1nm Au 30nm

Nd- YAG (532nm)

PMMA with Grating SiO2

Lamella grating

(23)

Frequency domain method for the Maxwell equations

( ) ( )

0 , , ˆ x ˆ y ˆ z

E jw

μ μ

x y z xH yH zH

∇× = + +

( ) ( )

0 , , ˆ x ˆ y ˆ z

H jwε ε x y z xE yE zE

∇× = − + +

The Maxwell equations in the spatial domain have partial differential operators. But Maxwell equations in the frequency domain are

Homogeneous Maxwell equations in the spatial domain

( ) ( )

( )

( )

( )

( )

0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

x

z y

x x

y

z x

y y

z z y x z

x x z y x

z x

y y

y

y x

z z

z

jK jK

E E

jK jK

E E

jK jK

E E

k H jK jK H

jK jK

H H

jK jK

H H

ε ε

ε

μ

μ

μ

= ⎢

⎥ ⎢

⎥⎦

Homogeneous Maxwell equations in the (spatial) frequency domain

Fourier

transform

(24)

Rigorous coupled wave analysis (RCWA)

i

th

layer (i+1)

th

layer

( )i M N x mn( )i, ( ) ( )y mni, ( ) z mn( ),i ( ) exp

(

x m, y n,

)

m M n N

E xS z yS z zS z j k x k y

=− =−

=

∑ ∑

+ + +

( )

ε

( ) ( )

, ,

,

( , ) exp ( )

i i

gh x g x h

g h

x y j G x G y

ε =

ε ⎣ +

Structure modeling (staircase approximation)

Fourier representation of the permittivity of the ith layer

Fourier representation of the EM fields in the ith layer

(25)

RCWA examples

2D-binary dielectric grating showing polarization-dependent diffraction

TM-polarization TE-polarization

(26)

RCWA examples

3D micro-pyramid structure (15 level staircase approximation)

x

y

z

x-y crosssection

Ey

x-y crosssection

Ex

Ex

Ey Ey

Ex

Wavelength(λ)=532nm Period=3λ, Height=6λ Normal incidence

(27)

Pseudo-Fourier modal analysis (PFMA)

( )

2 2 2

( (

, , ,

) )

2 2 2

, , M N H stp exp x stp y stp z stp

s M t N p H

x y z j k x k y k z

ε ε

=− =− =−

=

∑ ∑ ∑

% + +

( ,0 ,0 ,0 )

(

, , , , , , , , ,

) ( (

, , ,

) )

, ,

ej kx x ky y kz z x m n q y m n q z m n q exp x mnq y mnq z mnq

m n q

E x E y E z j k x k y k z

+ +

=

+ + + +

E%k

Structure modeling (3D Fourier series)

Pseudo-Fourier representation of the E-M field

Maxwell equation in the PFMA

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

,0

1 1

0

1 1

0 0

0 0

z y z x x y z y

y y

z y x z x x z y x z x

y y

y z x x y z y z

x x

jG K K K K

E E

jG K K K K E jk E

H k H

K K K K jG

H H

K K K K jG

ε μ ε

μ ε ε

μ ε μ

ε μ μ

+

=

+ ⎥ ⎢ ⎥

Eigenvalue

(28)

Metallic micro structures

y-z crosssection

x

y

z

x

x-y crosssection

y x

x-z crosssection

(29)

PFMA example

Longitudinally periodic and finite 2D photonic crystals

g g

=

C k

E E%

Total field distribution is a superposition of pseudo-Fourier eigenmodes with appropriate coupling coefficients.

Wavelength(λ)=532nm Period=1.2λ, radius=0.4 λ Normal incidence

(30)

Bloch-eigen mode extraction in the PFMA

Extracted Bloch-eigenmodes

Total E-field distribution Analysis method:

Pseudo-Fourier modal analysis

(31)

Comparison

FDTD RCWA PFMA

Domain Space Frequency Frequency

Field representation Finite-difference method Piles of truncated 2D- pseudo-Fourier series

Truncated 3D-pseudo- Fourier series Structure modeling Mesh-structure Staircase approximation

& piles of 2D-Fourier series

3D-Fourier series (no staircase approximation) Aperiodic structure

Analysis

Yes No

(If using PML, yes)

No

(If using PML, yes) Evanescent field

analysis

No (Cannot separate) Yes Yes

Modal analysis No No Yes

Computation cost Very huge Large Huge

(32)

3D Photonic crystals

n=1.5 w=0.3d h=0.7d c=2^0.5d

Iso-energy surface calculation Photonic band structure

calculation

(33)

Examples

Full band structure of a 3D diamond photonic crystal (FCC)

Full band structure of a 3D simple FCC photonic crystal

3.5

n = n =3.5

0 5 10 15 20 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa/2πc

0 5 10 15 20 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

wa/2πc

X U L Γ X W K X U L Γ X W K

(34)

Perspectives : parallel computing

Parallel computing system

‰ Linux MPI 기반의 병렬 컴퓨터

‰ 16 × AMD MP 2000+ CPU의 병렬 시스템

Master

AMD

Athlon MP

Referensi

Dokumen terkait