• Tidak ada hasil yang ditemukan

Chapter 6. Wavemaker Theory

N/A
N/A
Protected

Academic year: 2024

Membagikan "Chapter 6. Wavemaker Theory"

Copied!
14
0
0

Teks penuh

(1)

Chapter 6. Wavemaker Theory

LCFSBC(Linearized Combined Free Surface Boundary Condition): Take time derivative of LDFSBC and substitute into LKFSBC.

0 1 on

2

2 =

−∂

∂ =

z

z t

g

φ φ

Since φ∝eiσt, ∂2φ/∂t2 =−σ2φ. Therefore,

0 on

0

2 = =

∂ −

z

g z σ φ

φ (LCFSBC)

Lateral boundary condition:

(1) Kinematic boundary condition on wavemaker (2) Radiation condition: Waves outgoing at x=+∞

Paddle displacement is described by

z t x S sinσ

2 )

= (

(2)

z t x S t z x

F sinσ

2 ) ) (

, ,

( = −

F t n F

u

= −

⋅ /

F k dz t

i dS

F n F

∇ =

= ∇

sin ˆ 2

ˆ 1 σ

z t x S z t

t S dz dS

u w σ σ σ sinσ

2 ) on (

0 2 cos

) sin (

2 − = =

By Taylor series expansion about x=0

0 2 cos

) sin (

sin 2 2

) (

2 cos ) sin (

2

0 0

=

⎟ +

⎜ ⎞

⎛ − −

∂ + ∂

⎟⎠

⎜ ⎞

⎛ − −

=

=

L

x x

z t t S dz dS u w

t x z

S

z t t S dz dS u w

σ σ σ

σ

σ σ σ

Assume S is small so that S=O(H). Then the linearized wavemaker KBC is

0 on

2 cos )

( =

∂ =

−∂

= S z t x

u φx σ σ

Referring to Table 3.1 of textbook, assume the solution as

(

Fe k hGez

) (

Hkx ktz IBx kCz

)

Dz tE t

A t z x

x k x

ks s s s σ

σ σ

φ

cos sin

cos

cos ) )(

( ) sin(

) ( cosh )

, , (

+ +

+

+ +

+

− +

=

(

C k z D k z

)

t

Be t x k z h k A t z

x p p σ ksx s s σ

φ( , , )= cosh ( + )sin( − )+ cos + sin cos

The first term satisfies BBC. For the second term to satisfy BBC, we need

(

sin( ) cos( )

)

0 Be k C k h k D k h

z s s s s

x k h

z

s − − + −

=

∂ =

−∂

=

φ

0 ) cos(

)

sin(− + − =

C ksh D ksh

(3)

h k C D=− tan s

(

cos cos sin sin

)

cos ( )

cos

sin tan

cos sin

cos

z h k E h k z k h k z h k

k C

z k h k C z k C z k D z k C

s s

s s

s s

s s

s s

s

+

=

=

= +

t z h k Be

t x k z h k A t z

x p p σ ksx s σ

φ( , , )= cosh ( + )sin( − )+ cos ( + )cos

Applying LCFSBC,

0 on

0

2 = =

∂ −

z

g z σ φ φ

{

cosh sin( ) cos cos

}

0

cos sin

) sin(

sinh

2

= +

t h k Be

t x k h k g A

t h k e

Bk t x k h k Ak

s x k p

p

s x k s p

p p

s s

σ σ σ

σ σ

h k gk h

g k h k k

h k gk

h g k

h k k

s s s

s s

p p

p p

p

tan 0

cos sin

tanh 0

cosh sinh

2 2

2 2

=

=

=

=

σ σ σ σ

h h k

gk h

p p

tanh

2 =

σ

(4)
(5)

k h h

gk h

tan s

2 =−

σ

s

We have infinite number of roots, ks(n), n=1,2,L. Let us examine the first term:

h x e

h x e

h x e

e e ks x h x

3 for

009 . 0

2 for

043 . 0

for 208 . 0

2 / 3

2 / 2

/ )

1 (

=

=

=

=

=

=

=

=

=

π π π π

This term decays exponentially with the distance from the wavemaker, x. The other terms decay more rapidly with x. These terms are called evanescent modes. Now the velocity potential becomes

=

+

+

− +

=

1

)

( cos[ ( )( )]cos

) sin(

) ( cosh )

, , (

n

s x n k n p

p

p k h z k x t C e k n h z t

A t z

x σ s σ

φ

↑ ↑

progressive wave evanescent waves decaying exponentially with x

Ap and Cn(n=1 to∞) should be determined from WBC:

(6)

= =

= +

+ +

∂ =

− ∂

0 1

2 cos ) cos (

)]

)(

( cos[

) ( cos

) ( cosh

n

s s

n p

p p x

z t t S z

h n k n k C t

z h k k

x A σ σ σ σ

φ

Examining variation over depth,

2 0

2

2k Z =

dz Z d

h dz z

dZ =0 on =−

0 on

0

2 = =

Z z

g dz dZ σ

This is the Sturm-Liouville problem, which gives the orthogonality of eigenfunctions, or

n m dz

Z

hZm n = ≠

0 0 if

In our problem, the eigenfunctions are and

. To find , multiply

) ( coshkp h+z L

, 2 , 1 )], )(

(

cos[ks n h+z n= Ap coshkp(h+z) on both side of WBC and integrate over depth:

∫ ∑∫

=

+

=

+ +

+ +

0

1 0

0 2

) ( 2 cosh

) (

) ( cosh )]

)(

( cos[

) ( )

( cosh

h p

n h n s s p

h p p p

dz z h z k

S

dz z h k z

h n k n k C dz

z h k k

A σ

+ +

=−

0

2 0

) ( cosh

) ( 2 cosh

) (

h p

p

h p

p

dz z h k k

dz z h z k

S A

σ

Similarly,

(7)

+

= 0 +

2 0

)]

)(

( [ cos ) (

)]

)(

( 2 cos[

) (

h s

s

h s

n

dz z h n k n

k

dz z h n z k

S C

σ

For piston-type wavemaker, S

z S( )=

and for flap type wavemaker,

⎟⎠

⎜ ⎞

⎝⎛ +

= h

S z z

S( ) 1

where S = stroke at SWL.

Far from the wavemaker, where the evanescent modes are negligible,

(8)

) cos(

1 cosh )

2 cos( 0 A k h k x t

g t

t g x H k

p p

p z

p σ φ σ σ

η =− −

= ∂

=

=

h k g A

Hp cosh p

=

See versus in Figure 6.2 of textbook. See also Eqs. (6.25) and (6.26).

For small , S

H/ kph

h kp

⎪⎩

⎪⎨

= for flap wavemaker 2

emaker piston wav

for h k

h k S H

p p

Mean power (averaged over one wave period) required by the wavemaker is calculated by the energy flux away from the wavemaker:

∫ ∫

+

=

= t T

t h d

g p udz

EC T

P 1 0

(9)

3-D Wavemaker

“Snake-type” wavemaker

(10)

The boundary value problem is

2 0

2 2 2 2 2

2 =

∂ +∂

∂ +∂

=∂

x y z

φ φ φ φ

h

z = z=−

∂φ 0 on

0 on

0

2 = =

∂ −

z

g z σ φ φ

0 on

) 2 cos(

)

( − =

∂ =

−∂ S z y t x

x σ λ σ

φ

Assume φ(x,y,z,t)= X(x)Z(z)Y(y,t). z -problem is the same as 2-D wavemaker problem. Thus,

=

+ +

+

=

1

) )(

( cos )

( cosh )

(

n

s

n k n h z

C z

h k A z Z

with σ2 =gktanhkh and σ2 =−gks tanksh. Periodicity condition in y-direction gives

) cos(

) sin(

) ,

(y t C y t D y t

Y = λ −σ + λ −σ

Substituting these into the Laplace equation,

1 2 2 0

2

2 ±k −λ =

dx X d X

where + is for progressive wave, and − is for evanescent waves. The solutions are

x k

F x k

E

X = cos 2 −λ2 + sin 2 −λ2

x k x

k s

s

s Fe

Ee

X = 2+λ2 + 2+λ2

(11)

Now the velocity potential is given by

=

+

+ +

− +

− +

=

1

2 2

) cos(

)]

)(

( cos[

) sin(

) ( cosh

2 2

n

x k s

n k n h z e y t

C

t y x k

z h k A

s λ σ

σ λ λ φ

λ

WBC gives

) 2 cos(

) (

) cos(

)]

( cos[

) cos(

) ( cosh

1

2 2 2 2 0

t z y

S

t y z

h k k

C

t y z

h k k

x A

n

s s

n x

σ λ σ

σ λ λ

σ λ φ λ

=

− +

+ +

− +

∂ =

−∂

=

=

Use orthogonality to determine A and Cn.

Cylindrical wavemaker

Spiral wavemaker (Type III in text)

(12)

Boundary value problem:

(13)

1 0 1

2 2 2 2 2 2

2

2 =

∂ + ∂

∂ + ∂

∂ + ∂

=∂

r r r r z

φ θ

φ φ

φ φ

h

z = z=−

−∂φ 0 on

0 on

0

2 = =

∂ −

z

g z σ φ φ

KBC on cylinder wall:

) sin( t R

r= +ε θ −σ

0 ) sin(

) , ,

(r t =rR− − t =

F θ ε θ σ

0 on

0 ) cos(

)

cos( − + − 2 − = =

= t F

r u u Dt t

DF

r ε θ σ

σ θ

σε θ

Neglecting the second order term,

0 on

)

cos( − =

∂ =

−∂

= t F

ur φr σε θ σ

Taylor series expansion about r=R gives

[ ]

[

cos( )

]

sin( )

[

cos( )

]

0

)

cos( sin( )

= +

∂ +

− ∂ +

− +

=

− +

=

=

+

=

L

R r r

R r r

t R

r r

t r u

t t

u

t u

σ θ σε σ

θ ε σ

θ σε

σ θ

σε ε θ σ

R r

r =− − t =

− ∂

∴ φ σεcos(θ σ ) on

Using separation of variable, the solution satisfying the radiation condition (outgoing waves as r→∞) is

=

+ +

+

=

1

) ( 1

) ( )

1 (

1 ( )cosh ( ) ( )cos ( )

) , , , (

n

t i n

n n t

i p

p

pH k r k h z e C K k r k h z e

A t z

r θ θ σ θ σ

φ

Ap and Cn can be determined from orthogonality condition by integrating over z.

(14)

Plunger wavemaker (See Figure 6.8 of textbook.)

Referensi

Dokumen terkait