• Tidak ada hasil yang ditemukan

PDF Chapter 3. Small-Amplitude Water Wave Theory - Seoul National University

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Chapter 3. Small-Amplitude Water Wave Theory - Seoul National University"

Copied!
19
0
0

Teks penuh

(1)

Chapter 3. Small-Amplitude Water Wave Theory

3.1 Introduction

Assuming inviscid, incompressible fluid and irrotational flow, φ and exist, which

satisfy .

Ψ

2 0

2 =∇ Ψ=

∇ φ

3.2 Boundary Value Problem

(2)

3.3 Boundary Conditions

3.3.1 Kinematic boundary condition

The kinematic boundary condition is a condition that describes the water particle kinematics at a boundary (either fixed or moving). If we sit on a boundary (fixed or moving) and move with the boundary, we do not feel any change of the surface that constitutes the boundary. Mathematically, the rate of change of the surface must be zero, i.e., the total derivative of the surface is zero on the surface. Let the surface of the boundary be represented by F(x,y,z,t)=0. Then

0 on

0 =

∂ = + ∂

∂ + ∂

∂ + ∂

= ∂ F

z w F y v F x u F t F Dt DF

2 2 2

,

; ⎟

⎜ ⎞

∂ + ∂

⎟⎟⎠

⎜⎜ ⎞

∂ + ∂

⎟⎠

⎜ ⎞

= ∂

∂ ∇ +∂

∂ +∂

= ∂

=

∂ =

−∂

z F y

F x

F F z k

j F y i F x F F F n u F t u

F

0

/ on =

=−

F

F t n F

u

(3)

3.3.2 BBC

Assume a fixed sea bed:

0 ) , ( )

, , , ( )

,

( ⇒ = + =

= h x y F x y z t z h x y z

The kinematic boundary condition on sea bed is ) , ( on

/ 0

y x h F z

t n F

u = =−

= −

Recall that ab if ab=0. Therefore, un=0 means that u is parallel to the sea bed surface, i.e. no flow perpendicular to the bed.

Using

1

2 2

⎟⎟ +

⎜⎜ ⎞

∂ + ∂

⎟⎠

⎜ ⎞

∂ + +∂

∇ =

= ∇

y h x

h

k y j i h x h F

n F

we have

) , ( on

) , ( on

0 1

2 2

y x h y z

h y x h x z

y x h y z

v h x u h w

y h x

h

y w v h x u h n u

∂ =

∂ + ∂

=∂

−∂

∂ =

− ∂

− ∂

=

=

⎟⎟ +

⎜⎜ ⎞

∂ + ∂

⎟⎠

⎜ ⎞

∂ + + ∂

=

φ φ

φ

On a horizontal bottom, ∂h/∂x=∂h/∂y=0, so that ∂φ/∂z=0 on z=−h.

(4)

3.3.3 KFSBC On water surface,

0 ) , , ( )

, , , ( )

, ,

( ⇒ = − =

= x y t F x y z t z x y t

z η η

The kinematic boundary condition on free surface is

(

/

) (

/

)

1 on ( , , )

/ /

2

2 z x y t

y x

t F

t n F

u η

η η

η =

+

∂ +

= ∂

= −

Using

1

2 2

⎟⎟ +

⎜⎜ ⎞

∂ + ∂

⎟⎠

⎜ ⎞

∂ +

−∂

−∂

∇ =

= ∇

+ +

=

y x

k y j xi F

n F

k w j v i u u

η η

η η

we have

) , , ( on

) , , ( on

t y x y z

y x x t z

t y x y z

x v t u

w

w t v y

u x

η η φ η φ η φ

η η η

η

η η

η

∂ =

−∂

−∂

=∂

−∂

∂ = + ∂

∂ + ∂

=∂

=∂

∂ +

− ∂

− ∂

Small-amplitude wave theory assumes LO(h)

H/L = wave steepness << 1 η ∼O(H)

(5)

tO(T) xO(L) zO(h)∼O(L)

u x

= ∂φ ∼ ⎟

⎜ ⎞

T

O H

φ ∼ ⎟

⎜ ⎞

T O HL

( ) ( )

1 1 1

) , , ( on

<<

⎟⎠

⎜ ⎞

⎟ ⎛

⎜ ⎞

⎟⎠

⎜ ⎞

⎟ ⎛

⎜ ⎞

⎟ ⎛

⎜ ⎞

⎟ ⎛

⎜ ⎞

∂ =

−∂

−∂

= ∂

−∂

L H L

H

L H T H L H T H T H T H

t y x y z

y x x t

z η φ η φ η η

φ

) , , (

on z x y t

t

z η η

φ =

=∂

−∂

Taylor series expansion about z =0 gives

⎟⎟⎠

⎜⎜ ⎞

⎟⎟ ⎛

⎜⎜ ⎞

⎟ ⎛

⎜ ⎞

⎟ ⎛

⎜ ⎞

=

⎟ +

⎜ ⎞

−∂

− ∂

∂ + ∂

⎟⎠

⎜ ⎞

−∂

−∂

∂ + ∂

⎟⎠

⎜ ⎞

−∂

−∂

⎟ =

⎜ ⎞

−∂

−∂

=

=

=

=

LT H LT H T

H T H

t z z

t z z t

z t

z z z z z

2 2

0 2

2 2

0 0

2 φ η L 0

η η

η φ η

φ η

φ

η

on =0

=∂

−∂ z

t z

η

φ (LKFSBC)

(6)

3.3.4 DFSBC

The Bernoulli equation on free surface is

( )

( ) on ( , , )

2

1 2 2 2

t y x z t

C p g

w v

t u η η

ρ

φ + + + + η + = =

− ∂

Using pη =0 (gauge pressure),

( )

( )

( )

1 1 ~

( )

1

) , , ( on

) 2 (

1

2 2

2 2

2 2 2

L O gT L

H T gH H T

HL

t y x z t

C g w v t u

⎟⎟⎠

⎜⎜ ⎞

<< ⎛

⎟⎠

⎜ ⎞

⎟⎟⎠

⎜⎜ ⎞

⎟ ⎛

⎜ ⎞

=

= + + +

∂ +

−∂φ η η

g C(t) on z (x,y,t)

t η η

φ + = =

− ∂

Taylor series expansion about z =0 gives

( )

( )

⎟⎟

⎜⎜ ⎞

⎟ ⎛

⎜ ⎞

⎟⎟ ⎛

⎜⎜ ⎞

⎟⎟⎠

⎜⎜ ⎞

⎟⎟ ⎛

⎜⎜ ⎞

⎟ ⎛

⎜ ⎞

=

⎟ +

⎜ ⎞

⎛ +

−∂

∂ + ∂

⎟⎠

⎜ ⎞

⎛ +

−∂

⎟ =

⎜ ⎞

⎛ +

−∂

=

=

=

L H L gT L H L

gT

L g H T

gH H T

HL

t C t g

g z g t

t z z z

2 2

2 2

2 2

0 0

1

) L ( φ η

η φ η

φ η

η

+ = ( ) on =0

−∂ g C t z

t η

φ (LDFSBC)

(7)
(8)

3.3.5 LBC

Assuming 2-D (xz) periodic wave,

) , ( ) , (

) , ( ) , (

T t x t x

t L x t x

+

= +

= φ φ

φ φ

3.3.6 Summary of 2-D periodic wave boundary value problem

GE ∇2φ =0 0≤xL, −hz≤η

BBC z h

z = =−

− ∂φ 0 on

LKFSBC on =0

=∂

−∂ z

t z

η φ

LDFSBC + = ( ) on =0

−∂ g C t z

t η

φ LBC

) , ( ) , (

) , ( ) , (

T t x t x

t L x t x

+

= +

= φ φ

φ φ

Note: The Laplace equation is linear, so the superposition of solutions is valid.

(9)

3.4 Solution to Boundary Value Problem

Using separation of variables, the velocity potential can be expressed as )

( ) ( ) ( ) , ,

(x z tx Ζ z Τt φ

Assume

t T

t) sinσ ; σ 2π

( = =

Τ

where σ = wave angular frequency. The above equation satisfies the periodicity condition in time, that is

t T

t T

t T

t T

t ) sin(σ σ ) sinσ cosσ cosσ sinσ sinσ

( + = + = + =

Τ

Now

t z x t

z

x σ

φ( , , )=Χ( )Ζ( )sin

Substitution into the Laplace equation gives

1 0 1

0 sin sin

2 2 2

2

2 2 2

2

Ζ= + Ζ

Χ Χ

Ζ = Χ + ΧΖ

dz d dx

d

dz t t d

dx

d σ σ

The first term is a function of x alone, whereas the second term is a function of zalone. Therefore, the two terms should be constants with opposite signs, that is,

2 2 2

2 2

2

1 1

dz k d

dx k d

Ζ = Ζ

− Χ= Χ

The possible solutions that satisfy these ODE’s are given in Table 3.1 of textbook.

(10)

Among these, the solution which satisfies the periodicity condition in x is

(

A kx B kx

) (

Ce De

)

t

t z

x kz kz σ

φ( , , )= cos + sin + sin

The periodicity condition in x gives

) sin cos cos

(sin )

sin sin cos

(cos

) ( sin )

( cos sin

cos

kL kx kL

kx B kL kx kL

kx A

L x k B L x k A kx B kx A

+ +

=

+ +

+

= +

For the above relation to be satisfied, the followings are needed:

0 sin and 1

coskL= kL=

which give the wave number,

k =2Lπ

Recalling that the superposition of solutions is valid for the Laplace equation, keep only

(

Ce De

)

t

kx A t z

x kz kz σ

φ( , , )= cos + sin

Using BBC,

( )

kh kh kh

kz kz

De C

De Ce

h z t

kDe kCe

kx z A

2

0

on 0 sin cos

=

=

=

=

∂ =

−∂

σ

φ

Therefore,

(11)

( )

( )

t z h k kx G

t e

e kx ADe

t De

e De kx A t z x

z h k z h k kh

kz kz

kh

σ

σ σ φ

sin ) ( cosh cos

sin cos

sin cos

) , , (

) ( ) ( 2

+

=

+

=

+

=

+

+

Applying LDFSBC,

g t t C g kx

kh G

t C g t kh kx

G

z t

C t g

) cos (

cosh cos

) ( cos

cosh cos

0 on

) (

+

=

= +

=

=

∂ +

−∂

σ σ η

η σ σ

φ η

The spatial mean of η must be zero. Thus, C(t) must be zero. Expressing η as

t

H kx σ

η cos cos

= 2

we have

kh G gH

cosh 2σ

=

Finally,

t kh kx

z h t gH

z

x σ

φ σ cos sin

cosh ) cosh(

) 2 , ,

( = +

Applying LKFSBC,

tanh 2 2

sin 2 cos

sin cosh cos

sinh 2

0 on

kh H gkH

t H kx

t kh kx

kh gkH

t z z

σ σ

σ σ σ σ

η φ

=

=

∂ =

=∂

− ∂

(12)

kh gktanh

2 =

∴σ (dispersion relationship)

The dispersion relationship gives relation among h, σ and k or the relation among h, T and L. The dispersion relationship can be solved for by Newton-Raphson method for given

k σ and . Approximate solutions are also available: h Eckart (1951):

g gk h

2

2 tanhσ

σ =

Hunt (1979):

textbook of

72 p.

in given

~ ,

; 1

)

( 1 6

2 6

1 2

2 d d

g y h y

d y y

kh

n n n

=σ +

+

=

=

The dispersion relationship gives

gT kh L

L kh T g

2 tanh 2 tanh 2

2 2

π π π

=

⎟ =

⎜ ⎞

In deepwater (kh>π ), tanhkh≅1. Therefore, the deepwater wavelength is

π 2

2 0

L = gT

Then

(13)

π 2

tanh tanh

tanh

0 0

0 0

0

gT T C L

kh C

T kh L T C L

kh L

L

=

=

=

=

=

=

(14)

In summary,

t H kx

t x

t kh kx

z h t Hg

z x

σ η

σ σ φ

cos 2 cos

) , (

sin cosh cos

) cosh(

) 2 , , (

=

= +

which represents a standing wave.

Another standing wave associated with the sinkx term gives

t H kx

t x

t kh kx

z h t Hg

z x

σ η

σ σ φ

sin 2 sin

) , (

cos cosh sin

) cosh(

) 2 , , (

=

− +

=

Superposition of the two standing waves gives a progressive wave:

) 2 cos(

) sin sin cos

2 (cos )

, (

) cosh sin(

) ( cosh 2

) cos sin sin

cosh (cos ) cosh(

) 2 , , (

t H kx

t kx t

H kx t x

t kh kx

z h k H g

t kx t

kh kx z h t Hg

z x

σ

σ σ

η

σ σ

σ σ σ

φ

=

+

=

+ −

=

+ −

=

(15)

Progressive wave propagating to positive x-direction:

For progressive wave propagating to negative x-direction:

) sin(

)

sin(kx−σtkxt

For the definitions of deepwater, shallow water, and intermediate depth water, see Fig.

3.12 of textbook. Also see Table 3.2 for asymptotic forms of hyperbolic functions.

Dispersion relationship in shallow water:

gh C

k gh C

h gk kh gk

=

⎟ =

⎜ ⎞

=⎛

=

2 2

2

2 tanh

σ σ

The shallow water wave is non-dispersive, that is, all the waves with different frequencies propagate at the same speed.

Dispersion relationship in deepwater:

π

π π π σ

π π σ

2

2 2 2 2

2 tanh

0 0

2 2

0 2 2

gT T C L

gT T

g g

L k

gk kh gk

=

=

=

⎟⎠

⎜ ⎞

= ⎛

=

=

=

(16)

3.5 Waves with Uniform Current

U0

Assume: 1) Current direction and wave propagation direction is collinear, and 2) Current is uniform vertically as well as horizontally.

In the absence of waves,

x x U

U0 ⇒ =− 0

−∂

= φ φ

For wave with current,

) cos(

) (

0x Acoshk h z kx t

U σ

φ =− + + −

which satisfies the periodicity condition and BBC. Then,

) sin(

) (

0 kAcoshk h z kx t

x U

u φ = + + σ

−∂

=

) (

sin ) ( cosh )

sin(

) ( cosh

2 0 2 2 2 2

2 0

2 U kAU k h z kx t k A k h z kx t

u = + + −σ + + −σ

Neglecting small nonlinear terms,

) sin(

) ( cosh

2 0

2 0

2 U kAU k h z kx t

u ≅ + + −σ

DFSBC is

( )

( ) ( )

( )

2 1 2

1 2 1

0 2

2 0

2 2

2 2

t C g

w t u

g z w t u

g w t u

z z

z

⎥⎦ =

⎢⎣ ⎤

⎡ + + +

−∂

∂ + ∂

⎥⎦⎤

⎢⎣⎡ + + +

−∂

=

⎥⎦⎤

⎢⎣⎡ + + +

−∂

=

=

=

φ η η

φ η φ η

η

(17)

Note that w2 is small compared to the linear terms but u2 is not. Then DFSBC gives

(

2 cosh sin( )

)

( )

2 ) 1 sin(

coshkh kx t U02 kAU0 kh kx t g C t

A − + + − + =

−σ σ σ η

or

) ( ) sin(

cosh 2 1

) ,

( 0

2

0 kU kh kx t C t

g A g t U

x ⎟ − +

⎜ ⎞

⎝⎛ − +

= σ

σ η σ

Since

= = +

= T TC t dt

T g dt U

T 0

2 0

0 1 ( )

0 2

1 η

η

we have

g t U

C( ) constant 2

2

= 0

=

Now

) 2 sin(

) sin(

cosh 1

) ,

( 0 H kx t

t kx kU kh

g t A

x σ σ

σ

η σ ⎟ − = −

⎜ ⎞

⎝⎛ −

=

which gives

C kh U

gH kU kh

g A H

cosh 1

2 cosh

2 1 0 0

⎟⎠

⎜ ⎞

⎝⎛ −

=

⎟⎠

⎜ ⎞

⎝⎛ −

=

σ σ σ

Therefore,

(18)

) cosh cos(

) ( cosh 1

2 )

, , (

0

0 kx t

kh z h k

C U x gH

U t z

x σ

σ

φ + −

⎟⎠

⎜ ⎞

⎝⎛ − +

=

Applying KFSBC,

0

0 0

=

⎥⎦ +

⎢⎣ ⎤

∂ + ∂

−∂

∂ + ∂

⎥⎦⎤

⎢⎣⎡

∂ +∂

−∂

= ∂

⎥⎦⎤

⎢⎣⎡

∂ +∂

−∂

=

=

=

L

z z

z t x x z z t x x z

z x x t

φ η φ η η

φ η φ η φ

η φ η

η

0

0 on =

−∂

∂ = + ∂

z

z U x

t

φ η

η

kh C gk

U

kh C gk

U C U

kh gk

kh C

U gk C

U

kh C

U gk U k

kh C

U k gk

U

t kx kh C

U t kgH

H kx k U t H kx

tanh 1

tanh 1

1 tanh

tanh 1

1

tanh 1

1

tanh 1

) cos(

tanh 1

2 ) 2 cos(

) 2 cos(

0 2 0 2

2 0 2

0 2

0

2 0 0

0 0

0 0

⎟=

⎜ ⎞

⎝⎛ −

=

⎟⎠

⎜ ⎞

⎝⎛ −

⎟⎠

⎜ ⎞

⎝⎛ −

=

⎟⎠

⎜ ⎞

⎝⎛ −

= +

⎟⎠

⎜ ⎞

⎝⎛ −

= +

⎟⎠

⎜ ⎞

⎝⎛ −

= +

⎟⎠

⎜ ⎞

⎝⎛ −

=

− +

σ σ σ

σ σ σ

σ σ

σ σ

σ σ

σ

Finally,

(19)

kh gk

k

U0 + tanh σ =

The second term on RHS indicates the angular frequency in no current, that is the angular frequency in moving frame of reference, while the total indicates the angular frequency in stationary frame of reference.

Referensi

Dokumen terkait