Field and Wave Electromagnetics
Chapter 3 Static Electric Fields
Chapter 3. Static Electric Fields
3 1 Introduction 3-1 Introduction
Coulomb’s law Experimental law Coulomb’s law Experimental law
ˆ q q1 2
F k
12
12 1 22
12
ˆR q q
F a k
= R
3 2 Fundamental Postulates of Electrostatics in Free Space 3.2 Fundamental Postulates of Electrostatics in Free Space
Force : F (N) Force :
El i fi ld i i (전계 강도) (N)
F
Electric field intensity (전계 강도)
F
lim0 [ V m ] or [ N C]
q
E F
→ q
=
why? - Not to disturb the charge distribution why? Not to disturb the charge distribution
of the source
3 2 Fundamental Postulates of Electrostatics in Free Space Two fundamental postulates of electrostatics
3.2 Fundamental Postulates of Electrostatics in Free Space
Two fundamental postulates of electrostatics
E ρ
⎧ ∇ = ε
⎪⎨ i ―① (MKS) note ∇iE = 4πρ (cgs)
0
0 E
⎨ ε
⎪ ∇× = →
⎩ irrotational ―②
0
1
v Edv v dv
Q ε ρ
→
∫
∇ =∫
∫
i
①
0
S
E d s Q
=
∫
i = ε Gauss's law 0E d l
→
∫
i =② 0
( ) 0
c
S
E d l
E ds E d l
→ =
∇× = =
∫
∫ ∫
i
∵ i i
②
Kirchhoff’s voltage law
3 2 Fundamental Postulates of Electrostatics in Free Space Conservative field
3.2 Fundamental Postulates of Electrostatics in Free Space Conservative field
1 2
0
C E d l + C E d l =
∫
1 i∫
2 i2 1
1 2
1 2
Along Along
P P
P P
C C
E d l = − E d l
∫
i∫
i1 2
2 1
2
g g
Along
P
P C
E d l
=
∫
ig 2
Why?
E d l E
∫
Why?
(Usually depends on integral path) cf) is irrotational!!
i
∵E
cf) ∵ is irrotational!!
3 3 Coulomb’s Law 3-3 Coulomb s Law
Coulomb’s law Coulomb’s law
ˆ ˆ
( R)
S S
E d s = R E R ds = q
∫
i∫
i0
2 0
( )
4
S S R
R
E q
R
ε
= πε
∴
∫ ∫
0
2 0
4
ˆ ˆ [V m ] or [ N C]
R 4
R E R E R q
R πε
= = πε
General Expression
2 3
0 0
( )
ˆ
4 4
p qp
q q R R
E a
R R R R
πε πε
− ′
= =
′ ′
− −
1 2 2 0
ˆ [N ]
4 F R q q
πε R
= cf)
3 3 Coulomb’s Law
Charged Shell
3-3 Coulomb s Law
Charged Shell
1 2
s ds ds
dE ρ ⎛ ⎞
= ⎜ 2 − 2 ⎟
0 1 2
2 2
1 2
4
cos
dE r r
d r d r
πε
α
= ⎜ ⎟
⎝ ⎠
Ω ⋅ = = Ω ⋅ solid angle
1 2
cos 0
ds ds
dE
α
= =
∴ =
solid angle
Discrete Charges Discrete Charges
3 1
( )
1 [V m]
4
n
k k
k
q R R E
R R πε
− ′
=
∑
′0 1
4 k
R Rk
πε = − ′
3 3 1 Electric Field due to a System of Discrete Charges 3-3.1 Electric Field due to a System of Discrete Charges
Electric dipolep
2 2
d d
R R
q
⎧ ⎫
⎪ − + ⎪
⎪ ⎪
3 3
0
2 2
4
2 2
E q
d d
R R
πε
⎪ ⎪
= ⎨ − ⎬
⎪ − + ⎪
⎪ ⎪
⎩ ⎭ 3
3 3 3
2
2 2
2
3 cos
2 2 2 4 ,
Rd
d d d d
R R R R R d R d
θ
− ⎡⎛ ⎞ ⎛ ⎞⎤− ⎡ ⎤−
− = ⎢⎜ − ⎟ ⎜⋅ − ⎟⎥ = ⎢ − ⋅ + ⎥
⎢⎝ ⎠ ⎝ ⎠⎥ ⎣ ⎦
⎣ ⎦
⎡ ⎤
3 2
3 3
2 2
1 1 3 (binomial expansion)
2
R d R d
R R
R R
−
− −
⎡ ⎤
⎡ ⋅ ⎤ ⎢ ⋅ ⎥
≅ ⎢ − ⎥ ≅ ⎢ + ⎥
⎣ ⎦ ⎢ ⎥
⎣ ⎦
2 3
( 1) ( 1)( 2)
(1 ) 1
2! 3!
n n n n n n
x nx x x
⎣ ⎦
− − −
± = ± ± ±
note
3 3 q R d
d − R d
±
⎡ ⎤ ⎡ ⎤
0
2 3 2
3 3
3
2 1 2 4
q R d
E R d
R R
d R d
R R
R πε
− ⎡ ⋅ ⎤
+ ≅ − ∴ ≅ ⎡⎢ ⋅ ⋅ − ⎤⎥
⎢ ⎣
⎣ ⎥ ⎦
⎦
3 3 1 Electric Field due to a System of Discrete Charges 3-3.1 Electric Field due to a System of Discrete Charges
3 2
( )
1 3 , ˆ cos ˆ sin ˆ
4
p qd electric dipole moment vector
E R p R p z R
R R θ θ θ
=
⎡ ⎤
= ⎢ ⋅ − ⎥ = −
⎣ ⎦
i Define
then,
( )
( )
3 2
4 0
cos
ˆ
ˆ i
R R
R p Rp R πε
θ
θ θ θ
⎢ ⎥
⎣ ⎦
=
i z
zˆ
θ Rˆ
( )
( )
3 0
cos sin
ˆ ˆ
2 cos sin [V/
4 p p R
E p R
R
θ θ θ
θ θ θ πε
= −
= + m] θ
θˆ
y
x
3 3 2 Electric field due to a continuous distribution of charge 3-3.2 Electric field due to a continuous distribution of charge
Continuous distribution Continuous distribution
2 ' 2
0 0
' 1
ˆ ˆ ', where ˆ
4 4 v
dv R
d E R E R dv R
R R R
ρ ρ
πε πε
= ⎯⎯→ =
∫
=0 0
' 3 0
4 4
1 ' [V/m]
4 v
R R R
E R dv
R
πε πε
πε ρ
=
∴
∫
) Surface & line charge density case cf
0
' 2
0
) Surface & line charge density case
1 ˆ
' [V/m]
4
s S
cf
E R ds
R ρ
= πε
∫
' 2
0
1 ˆ
' [V/m]
4
l
E L R dl
R ρ
= πε
∫
Ex 3 4 Infinitely long line charge Ex 3-4 Infinitely long line charge
Determine the electric field intensity of an infinitely long,
ˆ ˆ
sol) ', l ' l '
l
R r r z z ρ dl ρ dz
ρ
= − =
Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density in air
3
0 0
ˆ ˆ
' ' '
4 4
l dz R l dz r r z z
d E R
ρ ρ
πε πε
= = − 3
2 2 2
ˆ ˆ
( ' )
'
r z
r dE zdE r z
d
= +
+
3
2 2 2
0
where '
4 ( ' )
' '
l r
dE r dz
r z z dz ρ
πε ρ
=
+
3
2 2 2
0
( ' )
'
l z
l
dE z dz
r z dE r dz
ρ πε
ρ
= −
4 +
⎧⎪ 3
2 2 2
0
3
4 ( ' )
at ',
' '
l r
l
dE
r z z z
dE z dz
ρ πε
ρ
⎪ =
⎪ +
= ⎪⎨⎪ = −
⎪ ' 2 2 3
( ' )2 z z z
dE
r z
= πε
⎪ 4 +
⎪⎩
Ex 3 4 Infinitely long line charge Ex 3-4 Infinitely long line charge
⎧
3
2 2 2
0
'
4 ( ' )
at ',
' '
l r
dE rdz
r z
z z
d ρ
πε
⎧ =
⎪⎪ +
= − ⎪⎨
⎪
' 3 '
2 2 2
0
' '
( ' )
'
l
z z z z z z
dE z dz dE
r z
r dz
ρ πε
ρ ρ
=− =
∞
⎪ = = −
⎪ 4 +
⎪⎩
∫ 3
2 2
0 2 0
ˆ ˆ ˆ [V/m]
( ' ) 2
r l r dz l
E r E r r
r z r
ρ ρ
πε πε
∞
∴ = = −∞ =
4 ∫ +
HW. Integrate to have the above result cf) Symmetry →Gauss law
3 4 Gauss’s Law and Applications 3-4 Gauss s Law and Applications
C lind ical s mmet Cylindrical symmetry
( )
QE ρ E dv
∇i = ⇒
∫
'( )
∇i =0 0
By Divergence theorem
0
v
s
E ds Q
ε ε
←⎯⎯⎯⎯⎯⎯→ =ε
∫
∫
iz 0 E =
ε0
2 2 ,
L lL
E ds = π E r d dzφ = πrLE = ρ
∫
i∫ ∫
Er
0 0
0
2 ,
where, , 0
r r
S
r Z
E ds E r d dz rLE E rE E
φ π
ε
= =
∫ ∫ ∫
z 0 E =
0
2
l
Er
r ρ
∴ = πε
Ex 3 7 Spherical electron cloud Ex 3-7 Spherical electron cloud
for 0 R b
ρ = ρ ≤ ≤
⎧ 0 , for 0 Spherical symmetry → i e E = r Eˆ
0 , for R b R b
ρ ρ
ρ
= − ≤ ≤
⎧⎨ = >
⎩
2
Spherical symmetry i.e.
i) 0 b
4
r
R R
E r E R
E ds E ds E πR
→ =
≤ ≤
⋅ = =
∫
Si∫
3
0 0
4
3
i
R S R
v v
Q dv dv R
π
ρ ρ ρ π
= = − = − ⋅
∫ ∫
∫ ∫
0 0
ˆ , 0
E R 3ρ R R b
= − ⋅ ε ≤ ≤
∴
3
ii) b
4 (fixed)
R
Q ρ π b
≥
= 0
3 0
(fixed)
3 ˆ
3
Q b
E R b ρ
ρ ε
=
∴
−
−
= 2 , R b
R ≥
3ε0R
3 5 Electric Potential 3-5 Electric Potential
2
1
0 (Vector Identity)
P [J/C or V] (Work must be done against the field)
P
E E V
W E dl
q
∇× = → =−∇
=−∫ ⋅
2 2 2 2
1 1 1 1
2 1 ˆ
P [V] P P ( ) ( ) P
P P P P
q
V − =−V ∫ E dl⋅ ∵−∫ E dl⋅ =−∫ −∇V i l dl =∫ dV Remember when we define gradient
ˆ ˆ
dV dV dn dV cos dV ˆ ( ) n l V l dl = dn i dl = dn α = dn i = ∇ i
( )
dV = V dl
∴ ∇ i
) Refernece point of potential: the zero potential point is usually at infinity cf ) Refernece point of potential: the zero potential point is usually at infinity.
cf
3 5 1 Electric potential due to a charge distribution 3-5.1 Electric potential due to a charge distribution
Point charge at origin potential at R w r t that at infinity Point charge at origin, potential at R w.r.t. that at infinity
2 0
ˆ 4 E R q
πε R
=
2
0 0
ˆ ( ˆ ) [V]
4 4
R q q
V R R dR
R R
πε πε
∞
⎛ ⎞
= − ⎜ =
∴ ⎠⎟
∫
⎝ iV21 : Potential difference between point P1 and P2
2 1
21 P P
0 2 1
1 1
4 V V V q
R R
πε
⎛ ⎞
= − = ⎜ − ⎟
⎝ ⎠
3 5 1 Electric potential due to a charge distribution 3-5.1 Electric potential due to a charge distribution
No work ˆ
r ˆ dl R d F F r
φ φ
=
= No work i
0 F dl=
∴ i
1 [V]
n
qk
V
∑
'0 1
4 [V]
k
k k
V = πε
∑
= R − REx 3 8 An Electric dipole Ex 3-8 An Electric dipole
1 1
q ⎛ ⎞
0
1
1
1 1
4
1 cos 1 cos
2 2
V q
R R
d d
R R
R R
πε
θ θ
+ −
−
−
⎛ ⎞
= ⎜ − ⎟
⎝ ⎠
⎧ ⎛ − ⎞ ≅ ⎛ + ⎞
⎪ ⎜⎝ ⎟⎠ ⎜⎝ ⎟⎠
⎪
1
1
2 2
,
1 cos 1 cos
2 2
R R
d R
d d
R R
R θ R θ
+
−
−
−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎪⎨
⎛ ⎞ ⎛ ⎞
⎪ ⎜ + ⎟ ≅ ⎜ − ⎟
⎪ ⎝ ⎠ ⎝ ⎠
⎩
2 2
0 0
cos 1 ˆ
, where : dipole moment vector
4 4
V qd p R p qd
R R
E
θ
πε πε
= = ⋅ =
= −∇V = −Rˆ ∂∂VR −θˆ R∂∂Vθ = 4 pR33
( (
Rˆ 2cosθ θ+ ˆsinθ) )
0
1 2 3
1 1 2 2 3 3
4
ˆ ˆ ˆ
)
R R R
V V V
cf V u u u
h u h u h u
θ πε
∂ ∂
∂ ∂ ∂
∇ = + +
∂ ∂ ∂
2
Note
1. Equipotential line : cos
2 fi ld li i
R cV
E R
θ θ
= 2. E−field line : R = cE sin2θ
Potential due to continuous charge
'
1 '
4 v
V dv
R ρ
= πε
∫
[V] : volume charge distribution
0
0 '
4
1 '
4
v
s
R
V ds
R πε
ρ
= πε
∫
∫
[V] : surface charge distribution
0 '
1 '
4
l
V L dl
R ρ
= πε
∫
[V] : line charge distribution
Ex 3 9 A uniformly charged disk Ex 3-9 A uniformly charged disk
Obtain a formula for the electric field intensity
2 2
2
1
y
sol) ' ' ' ' and '
s b ' ' '
ds r dr d R z r
V π r dr d
φ
ρ φ
= = +
= ∫ ∫
( )
( )
0 0 1
2 2
0 2
1
2 2 2
' '
b s
z r
z r z
πε φ
ρ
4 +
⎡ ⎤
= ⎢ + ⎥
∫ ∫
( )
0 0
2 z r z
= ε ⎢ + − ⎥
⎣ ⎦
'
( )
2 2 2
1
2 2 2
2 2
cf) ', ' substitute '
' ' 0
r dr z r k
z r
k k
+ =
+
⎫
∫
( )
( )
( 2 2 2)1
2 2
2 2 2 2 2 2
1 2 2
' 0,
' ,
2 ' ' 2
z b
z
r k z k z
r b k z b k z b k dk dk k
d k dk k
1 +
= = → = ⎫
⎪⎪
= = + → = + ⎬⇒ = =
⎪⎪
∴ ∫ ∫
( )
2 'r dr'= 2k dk ⎪ k
⎪⎭
Ex 3 9 A uniformly charged disk Ex 3-9 A uniformly charged disk
⎧ ⎡
(
2 2)
112 ⎤0
1
ˆ 1 , 0
ˆ 2
z s z z b z
E V z V
z
ρ ε
⎧ ⎡ − ⎤
− + >
⎪ ⎢ ⎥
∂ ⎪ ⎣ ⎦
= −∇ = − ∂ = ⎨⎪ ⎡
(
2 2)
12 ⎤0
ˆ 1 , 0
2 z s
z ρ z z b z
ε
∂ ⎪−⎪⎩ ⎡⎢⎣ + + − ⎤⎥⎦ <
2 2
0
ˆ , 0
ˆ 4
For very large s
Note
z Q z
b z
z E z π ρ πε
⎧ >
⎪⎪⎨
2 0
2 0
For very large ,
4 ˆ , 0
4 z E z s
z Q
z z
z πε
πε
= = ⎨
⎪ − <
⎪⎩
3 6 Conductors in Static Electric Field 3-6 Conductors in Static Electric Field
Conductor : Free Electrons
The electrons in the outermost shells of the atoms of conductors are free to move
Insulator or dielectrics
The electrons in the atoms of insulators are confined to their orbits: no free electrons
electrons
Semiconductors
A relatively small number of freely movable charge carriers A relatively small number of freely movable charge carriers
→ Allowed energy bands for electrons.
→ Forbidden band → Band gap
3 6 Conductors in Static Electric Field
Charge introduced → Field will be set up → Charges will move away
3-6 Conductors in Static Electric Field
Charge introduced Field will be set up Charges will move away
from each other to reach conductor’s surface until the charge and the field inside vanish
: Inside a conductor ρ =0, E =0
Under static conditions, the E field on a conductor surface is everywhere normal to the surface → Equipotential surface (No tangential component)
0 ( E inside conductor is zero)
abcdaE dl= Δ =Et w
∫
i ∵0
abcda
t s n
E E ds E s ρ s
∴ =
= Δ = Δ
∫
∫
i0
0 s n
s
En
ε ρ
= ε
∴
∫
3 6 Conductors in Static Electric Field
Boundary conditions at a conductor / Free space interface
3-6 Conductors in Static Electric Field
Boundary conditions at a conductor / Free space interface
t 0 E
ρ
⎧ =
⎪⎨ (∵E field = 0 inside conductor)
0 s
En ρ
⎨ = ε
⎪⎩
(∵E field = 0 inside conductor)
Uncharged conductor in a static field
Electrons move in a direction opposite to that of the field
- Electrons move in a direction opposite to that of the field - Positive charges move in the direction of the field
- So that induced free charge will distribute on the conductor surface and create an induced field in such a way to cancel the external field inside the conductor and induced field in such a way to cancel the external field inside the conductor and tangent to its surface
Ex 3 11 A point charge +Q at the center of a conducting shell Ex 3-11 A point charge +Q at the center of a conducting shell
Determine E and V as functions of the radial distance R
0
Determine and as functions of the radial distance "Ungrounded"
(a) Spherical Symmetry R ˆ
E V R
R > R ∵ E = E R
( )
2 1
0
1 2 1 1
4
,
S R
R
R R
E ds E R Q
Q Q
E V E dR
π ε
⋅ = =
= = −
∴ =
∫
∫ ( )
( )
1 2 1 1
0 0
0
4 , 4
b , Ins
R R
i
R R
R R R
πε ∞ πε
<
<
∫
2
ide a conductor E =0 ∴ER =0
0
2
2 1
0 0
, whole conducting shell is an equipotential body 4
R
R R
V V Q
πε R
= = =
An amount of negative charge equal to must be induced on the inner shell surface at in order to cancel out the field induced by positive charge i at center.
Note
Q
R R Q
−
= +
This implies again that +Q must be induced on the outer shell surface at R = R0.
Ex 3 11 A point charge +Q at the center of a conducting shell Ex 3-11 A point charge +Q at the center of a conducting shell
( )R < R
3 2 3 3
0 0
(c)
,
4 4
i
R R
R R
Q Q
E V E dR C C
R R
πε πε
<
= = −∫ + = +
3 2 0
3
0 0 0 0
where, at is equal to at
1 1 1 1 1
4 4
i
i i
V R R V R R
Q Q
C V
R R R R R
πε πε
= =
⎛ ⎞ ⎛ ⎞
= ⎜ − ⎟ ∴ = ⎜ + − ⎟
⎝ ⎠ ⎝ ⎠
0 ⎝ 0 i ⎠ 0 ⎝ 0 i ⎠
Electric field intensity and potential variations of A point charge +Q at the center of a conducting shell