• Tidak ada hasil yang ditemukan

Chapter 8. Material-Removal Processes: Cutting

N/A
N/A
Protected

Academic year: 2024

Membagikan "Chapter 8. Material-Removal Processes: Cutting"

Copied!
55
0
0

Teks penuh

(1)

Chapter 8. Material-Removal Processes: Cutting

Sung-Hoon Ahn

School of Mechanical and Aerospace Engineering Seoul National University

(2)

Prof. Ahn, Sung-Hoon

Machining ( 기계가공 )

 Machining is the broad term used to describe a removal of material from a workpiece.

 Cutting processes (

절삭가공

)

 Abrasive processes (입자가공)

 Advanced machining processes (특수기계가공)

(3)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

High speed machining

(4)

Prof. Ahn, Sung-Hoon

Chip formation ( 칩형성 )

 Orthogonal cutting (

직교절삭

)

 Oblique cutting (

경사절삭

)

 Positive Rake angle (

경사각

)

Chip away from the workpiece

 Negative Rake angle

Sturdy

(여유각) (전단면)

(전단각)

(경사각)

(5)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Orthogonal cutting model

(6)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon Shear plane angle

Tool Chip

Shear-angle relationships – Merchant model

View demo

 

sin 1

tan cos

) cos(

sin

r r

t

OD t

C

 

 

 where   1

t

C

r t

sin cos

cos sin

T C

N

T C

R

F F

F

F F

F

(7)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Cutting force ( 절삭력 )

(8)

Prof. Ahn, Sung-Hoon

 Machined material (chip) has higher hardness than uncut material due to strain hardening (shear strain,

~20)

 Vickers indentation test

Strain hardening

(9)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Chip morphology ( 칩형상 ) (1)

(10)

Prof. Ahn, Sung-Hoon

 Continuous chips (

연속형 칩

)

High cutting speeds / high rake angles (secondary shear zone)

Good for tool life & surface finish (may need chip breaker)

Ductile materials with low coefficient of friction

 Built-up Edge chips (BUE,

구성인선

)

High friction coefficient – workpiece weld on the tool edge

Periodical separation of material bad surface

It can be reduced by increasing the cutting speed and the rake angle, decreasing the depth of cut, using a tool with a small tip radius and effective cutting fluid.

Chip morphology ( 칩형상 ) (2)

 Serrated chips (

톱니형 칩

)

Nonhomogeneous / segmented chips

Zones of low and high shear strain

Ti : sharp decrease of strength and thermal conductivity with increased temperature

 Discontinuous chips (불연속 칩)

Brittle materials (ductile materials with high friction coefficient): Cast iron, bronze

Chatter, vibration

(11)

Prof. Ahn, Sung-Hoon

Chip morphology ( 칩형상 ) (3)

 Depending on :

cutting speed, temperature,

tool angle, friction, vibration

(12)

Prof. Ahn, Sung-Hoon

Oblique cutting ( 경사절삭 )

 Inclination angle ( 기움각 ), i

(13)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Turning tool

(14)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Turning ( 선삭 )

(mm) cut

of depth :

(mm/rev) feed

:

(m/min) speed

cutting :

Where

w f V

Vfw removal

of

Rate 

(15)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Temperature

(16)

Prof. Ahn, Sung-Hoon

Tool wear ( 공구마멸 )

 Flank wear

 Crater wear

 Chipping

(17)

Prof. Ahn, Sung-Hoon

Flank wear

 F. W. Taylor’s tool life equation

log C

T n

C V

C VT

n

log log

log  

70m/min

0.25, Carbide)

(Tungsten

50m/min

0.15, (HSS)

V n

V n

(18)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Tool condition monitoring

(19)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Surface finish

(20)

Prof. Ahn, Sung-Hoon

Machinability ( 절삭성 )

 Surface finish & integrity

 Tool life

 Machinability rating: cutting speed per 60min, e.g. 100 100ft/min (0.5m/s)

 Force and power requirements

 Chip control

 Free-machining steel ( 쾌삭강 )

 Steel with: lead, bismuth, sulfur, calcium

 Easy to machine: aluminum, brass, magnesium

 Difficult to machine: wrought-copper, titanium, tungsten

(21)

Prof. Ahn, Sung-Hoon

Cutting-tool materials

 Carbon steels

 High Speed Steels (HSS,

고속도강

)

(M and T series)

 Cast cobalt alloys

 Carbides (초경합금)

WC (tungsten carbide)

TiC (titanium carbide)

 Inserts

Easy to replace tools

(22)

Prof. Ahn, Sung-Hoon

Coated tool ( 피복공구 )

 TiN, TiC, TiCN

 Al

2

O

3

(

알루미나

)

 Diamond

 Ion implantation

 Multiphase

(23)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Cutting Processes

(24)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Lathe-round shape

(25)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Lathe components

(심압대)

(주축)

(가로 이송대)

(왕복대)

(26)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Drill

(생크길이)

(선단각) (홈)

(27)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Drilling operations

(28)

Prof. Ahn, Sung-Hoon

DOC

DOC

WOC WOC

Milling

 Depth of Cut (DOC)

 Width of Cut (WOC)

 Slab milling (

평밀링

)

 Conventional Milling (up milling,

상향절삭

)

Recommended, clean surface before machine

 Climb Milling (down milling,

하 향절삭

)

Efficient cut (larger chip)

Less chatter

Production work

(29)

Prof. Ahn, Sung-Hoon

Material removal by milling

 Cutting speed (m/min)

 V = pDN

(D : diameter of cutter(m), N : rotational speed of the cutter(rpm))

 Material Removal Rate (MRR)

 MRR = WOC * DOC * f

 f = feed rate (mm/min) = n * N * t

 Example

 V = 50 m/min, t = 0.1 mm/tooth, number of tooth (n)= 2,

 D = 4 mm, DOC = 0.2, WOC = 3, Cutter RPM (N) = 50000/(πx4) = 3979

 f = 2 *3979 * 0.1 = 796 mm/min, MRR = 3* 0.2 * 796 = 4776 mm

3

/min

Cutting Tool

- cross section

(30)

Prof. Ahn, Sung-Hoon

Sources of Errors

 Vibration (chatter)

 Tool deflection

 Temperature change

 Run-out

 Form Errors

 Surface Roughness

Form Error

Ra

Ideal Geometry

Surface Roughness

CL

Y

Form Error

X

a. ideal geometry

b. form error

c. surface roughness

(31)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Burr Formation

http://lma.berkeley.edu/tools

(32)

Prof. Ahn, Sung-Hoon

FEM Simulation

 Demo: EMSIM

 http://mtamri.me.uiuc.edu/testbeds/emsim/html/index2.shtml

(33)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

1-2-3 rule

Modular fixture

Fixture

(34)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Cost Estimation

(35)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Turning conditions

(36)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Drilling conditions

(37)

Prof. Ahn, Sung-Hoon

Milling conditions

(38)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Broaching( 브로칭 ) & Sawing( 톱작업 )

(39)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Controller

Microscope Spindle

Main computer

X-Y stage Vice

Micro Machining System

Tip of 127μm endmill

Micro endmills

 Positional resolution : 1 ㎛

 Tool diameter : 50 ㎛ ~1000 ㎛

 High speed : 46,000 RPM

 Tool material : HSS & TiN coating

 Work piece : Metal, Polymer, etc Precision stage

(40)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Prototyping Size & Time

1

Typical Prototyping Time

0 10 100 1000

Rapid

Prototyping

Injection Molding

(Days)

Typical Feature Size

1

μ

m 1mm 1m

MEMS Micro Machining

10

μ

m 100

μ

m 10mm 100mm
(41)

Prof. Ahn, Sung-Hoon

1,000 10,000 100,000

0.1 1 10 100

average TiAlN coating

Tool diameter (mm) Tool Cost (\)

DFM - Micro Milling

 10mm endmill

10μm stage error

0.1% for slot cutting

 100μm endmill

10μm stage error

10% for slot cutting

 Cost structure of micro machining is different from that of macro machining.

Tool cost dominates

A tip is not exact edge in micro scale

(42)

Prof. Ahn, Sung-Hoon

Spindle run-out

< Total Indicator Reading (TIR) Measurement >

Run-out effect on the final geometry is critical in micro machining Total run-out = TIR (Total Indicator Reading) + Error Terms

(vibration, thermal deformation, etc)

< Concept of run-out >

< Result of Total Indicator Reading (TIR) >

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25

Tool length (mm) Run-out ()

100㎛

200㎛

(43)

Prof. Ahn, Sung-Hoon

Micro walls

Barrier ribs

Rib width: 60㎛

Height: 500 ㎛ Tool: φ200 ㎛ Spindle: 24,000rpm DOC: 25㎛

Feed rate: 100㎛/s Time: 3hr 28min

×1200 ×600

×100

Geometric error: ~ 5 ㎛ (including error of microscope)

×100

×600 ×600

×300

×300

(44)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Micro machined mold

0.753mm 0.993mm

1.005mm

1.221mm

(45)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

From Concept to Part

CAD design Micro machining

Micro injection molded rotor Rotor with

micro channel

Aluminum mold

Part for UAV/MAV

ABS plastic

l = 2.9mm,

t= 300mm,

Pivot D=250 mm

Specification

Total time: 5 days

(46)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

More Meso/Micro Parts

Micro molding (ABS)

Micro pyramid

300mm

Freeform surface

3mm

Micro rotor

(47)

Prof. Ahn, Sung-Hoon

Micro Tools – Drill

PCBs for semiconductor

PCBs for cell phone

Shape of Micro drill

(48)

Prof. Ahn, Sung-Hoon

Micro Tools – End Mill

Wear of Micro End Mill

Shape of Micro End Mill

(49)

Prof. Ahn, Sung-Hoon

Spindle

Chuck

Cutting tool Turret

Workpiece

Milling tool

Turret

Cutting + Milling Cutting

CNC Lathe

CNC lathe can achieve multi-functional machining using attached milling turret, sub-spindle,

etc.

(50)

Prof. Ahn, Sung-Hoon

Changer Arm

Tool

Spindle

ATC : Automatic Tool Changer

 Tools are changed automatically.

(51)

Prof. Ahn, Sung-Hoon

Pallet #1

Pallet #2

APC : Automatic Pallet Changer

 Pallet : a flat platform on which a workpiece is installed.

 During machining the workpiece on pallet #1, another workpiece could be installed on pallet #2.

cf. tomb stone

(52)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Precision machining

(53)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

FANUC ROBOnano Ui

(54)

Prof. Ahn, Sung-Hoon Prof. Ahn, Sung-Hoon

Battery Pack Custom Circuit

Tool Holder

Receiver Circuit

IR LED RTD

Temperature Sensor Indexable

End Mill

Power Sensor

Load Controls TM

Temperature sensor

(55)

Prof. Ahn, Sung-Hoon

Dynamometer ( 공구동력계 )

Dynamometer

Cable

Amplifier

Measured Signal

The whole system configuration

Referensi

Dokumen terkait