Article
Common Fixed Point and Endpoint Theorems for a Countable Family of Multi-Valued Mappings
Hüseyin I¸sık1 , Babak Mohammadi2,* , Choonkil Park3,* and Vahid Parvaneh4
1 Department of Mathematics, Faculty of Science and Arts, Mu¸s Alparslan University, 49250 Mu¸s, Turkey;
2 Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran
3 Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
4 Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran;
* Correspondence: [email protected] (B.M.); [email protected] (C.P.)
Received: 4 December 2019; Accepted: 24 December 2019; Published: 21 February 2020 Abstract:We prove some common fixed point and endpoint theorems for a countable infinite family of multi-valued mappings, as well as Allahyari et al. (2015) did for self-mappings. An example and an application to a system of integral equations are given to show the usability of the results.
Keywords:common fixed point; endpoint; infinite family; multi-valued mapping; (HS) property
1. Introduction
The study of common fixed point for a family of contraction mappings was initiated by ´Ciri´c in [1].
Recently, in 2015, Allahyari et al. [2] introduced some new type of contractions for a countable family of contraction self-mappings and studied common fixed point for them.
On the other hand, existence of a fixed point for multi-valued mappings has been important for many mathematicians. In 1969, Nadler [3] extended the Banach contraction principle to multi-valued mappings. After that, many authors generalized Nadler’s result in different ways (see, for instance [4–8]).
In 2012, Samet et al. [9] introduced the notion of α-admisssible mappings and a new type of contraction to a mapping T : X Ñ X called α-ψ-contractive mapping, that is, αpx,yqdpTx,Tyq ďψpdpx,yqqfor allx,yPX. This result generalized and improved many existing fixed point results. In the last few years, some authors have extended the notion ofα-admisssibility andα-ψ-contraction to multi-valued mappings (see, [10,11]). In addition, common fixed point for a finite family or countable family of multi-valued mappings has been studied by some researchers (see, for example [12–16]).
The aim of this paper is to extend the new type of common contractivity for a family of mappings, introduced by Allahyari et al. (2015), toα-admisssible multi-valued mappings.
LetpX,dqbe a metric space, 2Xthe set of all nonempty subsets ofX, andCLpXqthe set of all nonempty closed subsets ofX. Assume thatHis the generalized Hausdorff metric onCLpXqdefined by
HpA,Bq “
# maxtsupxPADpx,Bq, supyPBDpy,Aqu, if it exists,
8, otherwise, (1)
for all A,B P CLpXq, whereDpx,Bq “ infyPBdpx,yq. LetT : X Ñ 2X is a multi-valued mapping. An elementxPXis said to be a fixed point ofTifxPTx, andxis called an endpoint ofTwheneverTx“ txu.
Mathematics2020,8, 292; doi:10.3390/math8020292 www.mdpi.com/journal/mathematics
2. Main Results
Now, we are ready to state and prove the main results of this study.
Definition 1. LetXbe an arbitrary space andα:XˆXÑ r0,8qbe a function. Assume thatTn :XÑ2X(n = 1,2,...) is a family of multi-valued mappings. We say thattTnuisα-admissible whenever for each xPXand yPTnx withαpx,yq ě1, we haveαpy,zq ě1for allzPTn`1y.
Theorem 1. LetpX,dqbe a complete metric space and0ăai,j pi,j“1, 2, ...qwith ai,i`1 ‰1for all i“1, 2, ...
satisfy:
(i) for each j, limiÑ8ai,j ă1;
(ii) ř8
n“1Ană 8, where An“śn i“1
ai,i`1
1´ai,i`1.
Letα:XˆXÑ r0,8qbe a given function andtTnube a sequence of multi-valued operatorsTn :XÑCLpXq(n = 1,2,...) such that
αpx,yqHpTix,Tjyq ďai,jrDpx,Tjyq `Dpy,Tixqs, (2) for all x,yPX;i,j“1, 2, ...with x‰y and i‰j. Moreover, assume that the following assertions hold:
(iii) there exist x0PXand x1PT1x0with x0‰x1andαpx0,x1q ě1;
(iv) tTnuisα-admissible;
(v) for each sequencetxnuinXwithαpxn,xn`1q ě1for all n and xnÑx, we haveαpxn,xq ě1for all n.
Then eachTnhave a common fixed point inX.
Proof. Using(iii)and (2), we have
Dpx1,T2x1q ď αpx0,x1qHpT1x0,T2x1q ď a1,2rDpx0,T2x1q `Dpx1,T1x0qs
“ a1,2Dpx0,T2x1q
ď a1,2rdpx0,x1q `Dpx1,T2x1qs, which implies
Dpx1,T2x1q ď a1,2
1´a1,2dpx0,x1q ă a1,2
1´a1,2pdpx0,x1q,
wherep ą1 is a fixed number. From the above inequality, there existsx2P T2x1such thatdpx1,x2q ă
a1,2
1´a1,2pdpx0,x1q. SincetTnuisα-admissible, we haveαpx1,x2q ě1. Similarly, Dpx2,T3x2q ď a2,3
1´a2,3dpx1,x2q ă a2,3 1´a2,3
a1,2
1´a1,2pdpx0,x1q, and so there existsx3 P T3x2such thatdpx2,x3q ă 1´aa2,3
2,3
a1,2
1´a1,2pdpx0,x1q. Continuing this process, we obtain a sequencetxnuinXsuch thatxn`1PTn`1xn,αpxn,xn`1q ě1, and
dpxn,xn`1q ăAnpdpx0,x1q, for alln“1, 2, ... . (3) For anyn,mPNwithnăm, from triangle inequality, we get
dpxn,xmq ď
m´1ÿ
k“n
dpxk,xk`1q ď
m´1ÿ
k“n
Akpdpx0,x1q Ñ0
asn,mÑ 8. Therefore, we have shown thattxnuis a Cauchy sequence. SincepX,dqis complete, there existsx PXsuch thatxn Ñ x. From(v), we getαpxn,xq ě 1 for alln. Now, we shall show that xis a common fixed point ofTn. Letmbe an arbitrary positive integer. Then, for anynPN, we have
Dpx,Tmxq ď dpx,xnq `Dpxn,Tmxq
ď dpx,xnq `αpxn´1,xqHpTnxn´1,Tmxq
ď dpx,xnq `an,mrDpxn´1,Tmxq `Dpx,Tnxn´1qs ď dpx,xnq `an,mrDpxn´1,Tmxq `dpx,xnqs.
Takinglimin both sides of the above inequality, asnÑ 8, we get Dpx,Tmxq ď plimnÑ8an,mqDpx,Tmxq, which impliesDpx,Tmxq “0 and soxPTmx.
Theorem 2. LetpX,dqbe a complete metric space and0ăai,j pi,j“1, 2, ...qwith ai,i`1 ‰1for all i“1, 2, ...
satisfy:
(i) for each (j), limiÑ8ai,j ă1;
(ii) ř8
n“1Ană 8where An“śn
i“1 ai,i`1
1´ai,i`1.
Letα:XˆXÑ r0,8qbe a given function andtTnube a sequence of multi-valued operatorsTn :XÑCLpXq(n = 1,2,...) such that
αpx,yqHpTix,Tjyq ďai,jmaxtdpx,yq,Dpx,Tixq,Dpy,Tjyq,Dpx,Tjyq,Dpy,Tixqu, (4) for all x,yPX;i,j“1, 2, ...with x‰y and i‰j. Moreover, assume that the following assertions hold:
(iii) there exist x0PXand x1PT1x0with x0‰x1andαpx0,x1q ě1;
(iv) tTnuisα-admissible;
(v) for each sequencetxnuinXwithαpxn,xn`1q ě1for all n and xnÑx, we haveαpxn,xq ě1for all n.
Then eachTnhave a common fixed point inX.
Proof. By(iii)and (4), we have
Dpx1,T2x1q ď αpx0,x1qHpT1x0,T2x1q
ď a1,2maxtdpx0,x1q,Dpx0,T1x0q,Dpx1,T2x1q,Dpx0,T2x1q,Dpx1,T1x0qu ď a1,2rdpx0,x1q `Dpx1,T2x1qs,
which implies
Dpx1,T2x1q ď a1,2
1´a1,2dpx0,x1q ă a1,2
1´a1,2pdpx0,x1q,
whichp ą1 is a fixed number. From the above inequality, there existsx2P T2x1such thatdpx1,x2q ă
a1,2
1´a1,2pdpx0,x1q. Continuing in this manner and as in proof of Theorem1, we obtain a sequencetxnuwith
αpxn,xn`1q ě1 andxPXsuch thatxn Ñx. Using(v), we getαpxn,xq ě1 for alln. Next, we show thatx is a common fixed point ofTn. Letmbe an arbitrary positive integer. Then, for anynPN, we have
Dpx,Tmxq ď dpx,xnq `Dpxn,Tmxq
ď dpx,xnq `αpxn´1,xqHpTnxn´1,Tmxq
ď dpx,xnq `an,mmaxtdpxn´1,xq,Dpxn´1,Tnxn´1q,Dpx,Tmxq, Dpxn´1,Tmxq,Dpx,Tnxn´1qu
ď dpx,xnq `an,mmaxtdpxn´1,xq,dpxn´1,xnq,Dpx,Tmxq,Dpxn´1,Tmxq,dpx,xnqu.
Taking lim as n Ñ 8, we obtain Dpx,Tmxq ď plimnÑ8an,mqDpx,Tmxq, which impliesDpx,Tmxq “0. This means thatxPTmxand the proof is complete.
Theorem 3. LetpX,dqbe a complete metric space and0 ď ai,j, 0 ă bi,jpi,j “ 1, 2, ...qwith ai,i`1 ‰ 1for all i“1, 2, ...satisfy:
(i) for each j, limiÑ8ai,j ă1and limiÑ8bi,jă 8;
(ii) ř8
n“1Ană 8where An“śn i“1
bi,i`1
1´ai,i`1.
Letα:XˆXÑ r0,8qbe a given function andtTnube a sequence of multi-valued operatorsTn :XÑCLpXq(n = 1,2,...) such that
αpx,yqHpTix,Tjyq ďai,jDpy,TjyqϕpDpx,Tixq,dpx,yqq `bi,jdpx,yq, (5) for all x,yPX;i,j“1, 2, ...with x‰y and i‰j, whereϕ:r0,8q ˆ r0,8q Ñ r0,8qis a continuous function such thatϕpt,tq “1for all tP r0,8qand for any t1,s1,t2,s2P r0,8q,
t1ďt2,s1“s2ùñϕpt1,s1q ďϕpt2,s2q.
Moreover, assume that the following assertions hold:
(iii) there exist x0PXand x1PT1x0with x0‰x1andαpx0,x1q ě1;
(iv) tTnuisα-admissible;
(v) for each sequencetxnuinXwithαpxn,xn`1q ě1for all n and xnÑx, we haveαpxn,xq ě1for all n.
Then eachTnhave a common fixed point inX.
Proof. By(iii)and (5), we have
Dpx1,T2x1q ď αpx0,x1qHpT1x0,T2x1q
ď a1,2Dpx1,T2x1qϕpDpx0,T1x0q,dpx0,x1qq `b1,2dpx0,x1q ď a1,2Dpx1,T2x1qϕpdpx0,x1q,dpx0,x1qq `b1,2dpx0,x1q ď a1,2Dpx1,T2x1q `b1,2dpx0,x1q,
which gives us
Dpx1,T2x1q ď b1,2
1´a1,2dpx0,x1q ă b1,2
1´a1,2pdpx0,x1q,
wherep ą1 is a fixed number. From the above inequality, there existsx2P T2x1such thatdpx1,x2q ă
b1,2
1´a1,2pdpx0,x1q. Similarly,
Dpx2,T3x2q ď b2,3
1´a2,3
dpx1,x2q ă b2,3
1´a2,3
b1,2
1´a1,2
pdpx0,x1q,
and so there existsx3 P T3x2such thatdpx2,x3q ă 1´ab2,3
2,3
b1,2
1´a1,2pdpx0,x1q. Continuing this process, we obtain a sequencetxnuinXsuch thatxn`1PTn`1xn,αpxn,xn`1q ě1, and
dpxn,xn`1q ăAnpdpx0,x1q, for alln“1, 2, ... . (6) Again, as in the proof of Theorem1, we conclude thattxnuis a Cauchy sequence, and so there existsxPX such thatxnÑx. From the assumption(v), we getαpxn,xq ě1 for alln. To show thatxis a common fixed point ofTn, letmbe an arbitrary positive integer. Then, for anynPN, we have
Dpx,Tmxq ď dpx,xnq `Dpxn,Tmxq ďdpx,xnq `αpxn´1,xqHpTnxn´1,Tmxq
ď dpx,xnq `an,mDpx,TmxqϕpDpxn´1,Tnxn´1q,dpxn´1,xqq `bn,mdpxn´1,xq ď dpx,xnq `an,mDpx,Tmxqϕpdpxn´1,xnq,dpxn´1,xqq `bn,mdpxn´1,xq.
Takinglimin both sides of the above inequality, asnÑ 8, we obtain Dpx,Tmxq ď plimnÑ8an,mqDpx,Tmxq.
We concludeDpx,Tmxq “0 and thusxPTmx.
3. Common Endpoint Theorems
The notion of endpoints of multi-valued mappings has been studied by some researchers in the last decade (see for instance, [17–19]). In current section, we state and prove some common endpoint theorems for a sequence of multi-valued mappings with the contractions mentioned in Section2. We need the following definition.
Definition 2. LetTn :XÑCLpXq(n = 1,2,...) be a sequence of multi-valued mappings. We say thattTnuhas (HS) property whenever for each xPXthere exists yPTnx such thatHpTnx,Tn`1yq ěsupbPTn`1ydpy,bq.
Theorem 4. Let pX,dq be a complete metric space and0 ď ai,j pi,j “ 1, 2, ...q with ai,i`1 ‰ 1 for all i “ 1, 2, ...satisfy:
(i) for each (j), limiÑ8ai,j ă1;
(ii) ř8
n“1Ană 8where An“śn i“1
ai,i`1
1´ai,i`1.
Letα:XˆXÑ r0,8qbe a given function andtTnube a sequence of multi-valued operatorsTn :XÑCLpXq(n = 1,2,...) satisfying (HS) property such that
αpx,yqHpTix,Tjyq ďai,jrDpx,Tjyq `Dpy,Tixqs, (7) for all x,yPX;i,j“1, 2, ...with x‰y and i‰j. Moreover, assume that the following assertions hold:
(iii) there exists x0PXsuch that for any xPT1x0,we haveαpx0,xq ě1;
(iv) tTnuisα-admissible;
(v) for each sequencetxnuinXwithαpxn,xn`1q ě1for all n and xnÑx, we haveαpxn,xq ě1for all n.
Then eachTnhave a common endpoint inX.
Proof. Since tTnu has (HS) property, there exists x1 P T1x0 such that HpT1x0,T2x1q ěsupbPT2x1dpx1,bq. From(iii), we haveαpx0,x1q ě1. Similarly, there existsx2PT2x1such
thatHpT2x1,T3x2q ěsupbPT3x2dpx2,bq. SincetTnuisα-admissible, soαpx1,x2q ě1. If we continue this process, we obtain a sequencetxnuinXsuch thatxnPTnxn´1,αpxn´1,xnq ě1, and
HpTnxn´1,Tn`1xnq ě sup
bPTn`1xn
dpxn,bq, (8)
for allně1. Then we have
dpxn,xn`1q ď supbPTn`1xndpxn,bq ďαpxn´1,xnqHpTnxn´1,Tn`1xnq ď an,n`1rDpxn´1,Tn`1xnq `Dpxn,Tnxn´1qs
ď an,n`1rdpxn´1,xn`1qs ďan,n`1rdpxn´1,xnq `dpxn,xn`1qs.
From the above inequality, we get
dpxn,xn`1q ď an,n`1
1´an,n`1dpxn´1,xnq ď...ďAndpx0,x1q.
Hencetxnuis a Cauchy sequence, and so there existsx P X such thatxn Ñ x. From(v)we deduce αpxn,xq ě1 for alln. Now we show thatxis a common endpoint ofTn. LetmPNbe arbitrary. Then, for anynPN, we have
Hptxu,Tmxq ď dpx,xnq `Hptxnu,Tn`1xnq `αpxn,xqHpTn`1xn,Tmxq
ď dpx,xnq `αpxn´1,xnqHpTnxn´1,Tn`1xnq `αpxn,xqHpTn`1xn,Tmxq ď dpx,xnq `an,n`1rDpxn´1,Tn`1xnq `Dpxn,Tnxn´1qs
`an`1,mrDpxn,Tmxq `Dpx,Tn`1xnqs
ď dpx,xnq `an,n`1rdpxn´1,xn`1qs `an`1,mrDpxn,Tmxq `dpx,xn`1qs.
TakinglimasnÑ 8, we obtain
Hptxu,Tmxq ď plimnÑ8an`1,mqDpx,Tmxq ď plimnÑ8an`1,mqHptxu,Tmxq, which impliesHptxu,Tmxq “0 and soTmx“ txu. Sincemwas arbitrary, the proof is complete.
Theorem 5. In the statement of Theorem4, if we add the extra conditionαpx,yq ě1for any common endpoints x,y ofTn, then the common endpoint ofTnis unique.
Proof. Let x,y be two common endpoints of Tn. Since ř8
n“1An ă 8, there exists i0 P N such that
ai0,i0`1
1´ai0,i0`1 ă1, which impliesai0,i0`1ă1
2. Then, using (7), we get dpx,yq “ HpTix,Ti0`1yq
ď αpx,yqHpTi0x,Ti0`1yq
ď ai0,i0`1rDpx,Ti0`1yq `Dpy,Ti0xqs
“ 2ai0,i0`1dpx,yq, which impliesdpx,yq “0 and sox“y.
Example 1. Consider the spaceX“ r0, 1swith the usual metric dpx,yq “ |x´y|. Define a sequence of mappings Tn :XÑCLpXqby
Tnpxq “
$
’&
’%
t1u, 12ďxď1,
”2
3`n`21 , 1ı
, x“0, t0u, 0ăxă12.
Also consider the constants ai,j “ 13`|i´j|`61 . Then limiÑ8ai,j “ 13 ă1, for all j PN. An “śn
i“1 ai,i`1
1´ai,i`1 “
p1011qn. Thusř8
n“1An “ř8
n“1p1011qn ă 8. Also let αpx,yq “
# 1, x,yP t0u Y”
1 2, 1ı
, 0, otherwise.
Now we show thatαpx,yqHpTix,Tjyq ďai,jrDpx,Tjyq `Dpy,Tixqs, for all x,yPX. If0ăxă12 or0ăyă 12, thenαpx,yq “0and we have nothing to prove. Therefore, we may assume x,y P t0u Y”
1 2, 1ı
. We consider the following cases:
(1) x,yP
”1 2, 1ı
. In this case we haveαpx,yqHpTix,Tjyq “Hpt1u,t1uq “0ďai,jrDpx,Tjyq `Dpy,Tixqs, for all x,yPX.
(2) xP
”1 2, 1ı
and y“0. In this case we have
αpx,yqHpTix,Tjyq “Hpt1u,
„2 3` 1
j`2, 1
q
“ |1´ p2 3` 1
j`2q| “ 1 3´ 1
j`2 ď 1 3 ď p1
3` 1
|i´j| `6qp|x´ p2 3` 1
j`2q| ` |0´1|q
“ai,jrDpx,Tjyq `Dpy,Tixq.
(3) x“y“0,iăj. Then
αpx,yqHpTix,Tjyq “ |2 3` 1
j`2´ p2 3 ` 1
i`2q| “ 1
i`2´ 1
j`2 ď 1 i`2 ď p1
3` 1
|i´j| `6qp2 3` 1
i`2` p2 3 ` 1
j`2qq
“ai,jrDpx,Tjyq `Dpy,Tixqs.
Also for x0“0and x1 “1, we have x1 P t1u “”
2
3`1`21 , 1ı
“T1x0andαpx,yq “1ě1. It is easy to check thattTnuisα-admissible. Also, for any common endpoints x,y, we haveαpx,yq ě1. Thus, all of the conditions of Theorem4and Theorem5are satisfied. Therefore, the mappingsTnhave a unique common endpoint. Here x“1is the unique common endpoint ofTn.
Theorem 6. Let pX,dq be a complete metric space and0 ď ai,j pi,j “ 1, 2, ...q with ai,i`1 ‰ 1 for all i “ 1, 2, ...satisfy:
(i) for each (j), limiÑ8ai,j ă1;
(ii) ř8
n“1Ană 8where An“śn i“1
ai,i`1
1´ai,i`1.
Letα:XˆXÑ r0,8qbe a given function andtTnube a sequence of multi-valued operatorsTn :XÑCLpXq(n = 1,2,...) satisfying (HS) property such that
αpx,yqHpTix,Tjyq ďai,jmaxtdpx,yq,Dpx,Tixq,Dpy,Tjyq,Dpx,Tjyq,Dpy,Tixqu, (9) for all x,yPX;i,j“1, 2, ...with x‰y and i‰j. Moreover, assume that the following assertions hold:
(iii) there exists x0PXsuch that for any xPT1x0,we haveαpx0,xq ě1;
(iv) tTnuisα-admissible;
(v) for each sequencetxnuinXwithαpxn,xn`1q ě1for all n and xnÑx, we haveαpxn,xq ě1for all n.
Then eachTnhave a common endpoint inX.
Proof. As in the proof of Theorem4, there exists a sequencetxnuinXsuch thatxnPTnxn´1,αpxn´1,xnq ě 1, and
HpTnxn´1,Tn`1xnq ě sup
bPTn`1xn
dpxn,bq, for allně1. Then we have
dpxn,xn`1q ď supbPTn`1xndpxn,bq ďαpxn´1,xnqHpTnxn´1,Tn`1xnq ď an,n`1maxtdpxn´1,xnq,Dpxn´1,Tnxn´1q,Dpxn,Tn`1xnq,
Dpxn´1,Tn`1xnq,Dpxn,Tnxn´1qu ď an,n`1rdpxn´1,xnq `dpxn,xn`1qs.
From the above inequality, we get
dpxn,xn`1q ď an,n`1
1´an,n`1dpxn´1,xnq ď...ďAndpx0,x1q.
Thus,txnuis a Cauchy sequence and so there existsxPXsuch thatxnÑxandαpxn,xq ě1 for alln. Now, we show thatxis a common endpoint ofTn. LetmPNbe arbitrary. Then, for anynPN, we have
Hptxu,Tmxq ď dpx,xnq `Hptxnu,Tn`1xnq `αpxn,xqHpTn`1xn,Tmxq
ď dpx,xnq `αpxn´1,xnqHpTnxn´1,Tn`1xnq `αpxn,xqHpTn`1xn,Tmxq ď dpx,xnq `an,n`1rdpxn´1,xnq `dpxn,xn`1qs
`an`1,mmaxtdpxn,xq,Dpxn,Tn`1xnq,Dpx,Tmxq,Dpxn,Tmxq,Dpx,Tn`1xnqu ď dpx,xnq `an,n`1rdpxn´1,xnq `dpxn,xn`1qs
`an`1,mmaxtdpxn,xq,Dpxn,xn`1q,Dpx,Tmxq,Dpxn,Tmxq,Dpx,xn`1qu.
Takinglimin both sides of the above inequality, asnÑ 8, we obtain
Hptxu,Tmxq ď plimnÑ8an`1,mqDpx,Tmxq ď plimnÑ8an`1,mqHptxu,Tmxq, which impliesHptxu,Tmxq “0 and soTmx“ txu.
Theorem 7. With the conditions of Theorem6, if we add the extra conditionαpx,yq ě1for any common endpoints x,y ofTn, then the common endpoint ofTnis unique.
Proof. Letx,ybe two common endpoints ofTn. Using (9), we get dpx,yq “ HpTix,Tjyq ďαpx,yqHpTix,Tjyq
ď ai,jmaxtdpx,yq,Dpx,Tixq,Dpy,Tjyq,Dpx,Tjyq,Dpy,Tixqu
“ ai,jdpx,yq.
Thus,dpx,yq ďlimiÑ8ai,jdpx,yq, which means thatdpx,yq “0 and hencex“y.
Theorem 8. LetpX,dqbe a complete metric space and0 ď ai,j, 0 ď bi,jpi,j “ 1, 2, ...qwith ai,i`1 ‰ 1for all i“1, 2, ...satisfy:
(i) for each (j), limiÑ8ai,j ă1, limiÑ8bi,jă1;
(ii) ř8
n“1Ană 8where An“śn
i“1 bi,i`1
1´ai,i`1.
Letα:XˆXÑ r0,8qbe a given function andtTnube a sequence of multi-valued operatorsTn :XÑCLpXq(n = 1,2,...) satisfying (HS) property such that
αpx,yqHpTix,Tjyq ďai,jDpy,TjyqϕpDpx,Tixq,dpx,yqq `bi,jdpx,yq, (10) for all x,yPX;i,j“1, 2, ...with x‰y and i‰j, whereϕis as in Theorem3. Moreover, assume that the following assertions hold:
(iii) there exists x0PXsuch that for any xPT1x0,we haveαpx0,xq ě1;
(iv) tTnuisα-admissible;
(v) for each sequencetxnuinXwithαpxn,xn`1q ě1for all n and xnÑx, we haveαpxn,xq ě1for all n.
Then eachTnhave a common endpoint inX.
Proof. As in the proof of Theorem4, there exists a sequencetxnuinXsuch thatxnPTnxn´1,αpxn´1,xnq ě 1, and
HpTnxn´1,Tn`1xnq ě sup
bPTn`1xn
dpxn,bq, for allně1. Then we have
dpxn,xn`1q ď supbPT
n`1xndpxn,bq
ď αpxn´1,xnqHpTnxn´1,Tn`1xnq
ď an,n`1Dpxn,Tn`1xnqϕpDpxn´1,Tnxn´1q,dpxn´1,xnqq `bn,n`1dpxn´1,xnq ď an,n`1dpxn,xn`1q `bn,n`1dpxn´1,xnq.
From the above inequality, we get
dpxn,xn`1q ď bn,n`1
1´an,n`1
dpxn´1,xnq ď...ďAndpx0,x1q.
As in proof of Theorem1, we conclude thattxnuis a Cauchy sequence, and so there existsx P Xsuch thatxnÑxandαpxn,xq ě1 for alln. To show thatxis a common endpoint ofTn, consider an arbitrary natural numberm. Then, for anynPN, we have
Hptxu,Tmxq ď dpx,xnq `Hptxnu,Tn`1xnq `αpxn,xqHpTn`1xn,Tmxq
ď dpx,xnq `αpxn´1,xnqHpTnxn´1,Tn`1xnq `αpxn,xqHpTn`1xn,Tmxq ď dpx,xnq `an,n`1Dpxn,Tn`1xnqϕpDpxn´1,Tnxn´1q,dpxn´1,xnqq
`bn,n`1dpxn´1,xnq
`an`1,mDpx,TmxqϕpDpxn,Tn`1xnq,dpxn,xqq `bn`1,mdpxn,xq ď dpx,xnq `an,n`1dpxn,xn`1q `bn,n`1dpxn´1,xnq
`an`1,mDpx,Tmxqϕpdpxn,xn`1q,dpxn,xqq `bn`1,mdpxn,xq.
TakinglimasnÑ 8, we obtain
Hptxu,Tmxq ď plimnÑ8an`1,mqDpx,Tmxq ď plimnÑ8an`1,mqHptxu,Tmxq, which showsHptxu,Tmxq “0. ThusTmx“ txu.
Theorem 9. In the statement of Theorem8, if we add the extra conditionαpx,yq ě1for any common endpoints x,y ofTn, then the common endpoint ofTnis unique.
Proof. Letx,ybe two common endpoints ofTn. Using (10), we have dpx,yq “ HpTix,Tjyq
ď αpx,yqHpTix,Tjyq
ď ai,jDpy,TjyqϕpDpx,Tixq,dpx,yqq `bi,jdpx,yq
“ bi,jdpx,yq.
Therefore,dpx,yq ďlimiÑ8bi,jdpx,yq. Hencedpx,yq “0, which means thatx“y.
4. Application to Integral Equations
TakeI “ r0,Ts. LetX :“ CpI,Rqbe the set of all real valued continuous functions with domainI.
Define the mericdonXwith
dpx,yq “sup
tPI
p|xptq ´yptq|q “ ||x´y||.
Consider the system of integral equation:
xptq “pptq ` żT
0
Gpt,sqFnps,xpsqqds, tPI, n“1, 2, 3, . . . . (11) Our hypotheses on the data are the following:
pAq p:IÑRandFn :IˆRÑRare continuous, for allnPN; pBq G:IˆIÑRis continuous and measurable atsPIfor alltPI;
pCq Gpt,sq ě0 for allt,sPIandşT
0 Gpt,sqdsď1 for alltPI;
pDq there existsx0PXsuch thatx0ptq ďşT
0Gpt,sqF1ps,x0psqqds, for alltPI; pEq for any x P X with xptq ď şT
0Gpt,sqFnps,xpsqqds, for all t P I, then we have şT
0 Gpt,sqFnps,xpsqqdsďşT
0 Gpt,sqFn`1ps,şT
0Gps,τqFnpτ,xpτqqdτqds, for alltPI.
Let 0ďai,jpi,j“1, 2, ...qwithai,i`1‰1 for alli“1, 2, ... satisfy:
pFq for each (j),limiÑ8ai,jă1;
pGq Σ8n“1An ă 8whereAn “śn
i“1 ai,i`1
1´ai,i`1;
pHq for eachtPI,x,yPXwithxďy, andi‰j, we have
|Fipt,xptqq ´Fjpt,yptqq| ďai,jp|xptq ´şT
0 Gpt,sqFjps,ypsqqds|
`|yptq ´şT
0Gpt,sqFips,xpsqqds|q. (12) Theorem 10. Under the assumptionspAq–pHq,the system of integral Equation (11) has a solution inX.
Proof. DefineΥn :XÑXas
pΥnxqptq “pptq ` żT
0
Gpt,sqFnps,xpsqqds, tPI for allnPN. In addition, defineα:XˆXÑ r0,8qby
αpx,yq “
# 1, xptq ďyptq f or all tPI, 0, otherwise.
Letx,ybe two arbitrary elements ofX. Ifxęy, thenαpx,yq “0 and so inequality (2) holds, obviously.
Now, letxďy. Then
|pΥixqptq ´ pΥjyqptq| “ | żT
0
Gpt,sqpFips,xpsqq ´Fjps,ypsqqds|
ď żT
0
Gpt,sq|Fips,xpsqq ´Fjps,ypsqq|ds ď
żT 0
Gpt,sqai,jp|xpsq ´ żT
0
Gps,τqFjpτ,ypτqqdτ|
` |ypsq ´ żT
0
Gps,τqFipτ,xpτqqdτ|qds ď
żT 0
Gpt,sqai,jp|xpsq ´ pΥjyqpsq| ` |ypsq ´Υixqpsq|qds ď
żT 0
Gpt,sqai,jp||x´ pΥjyq|| ` ||y´Υixqpsq||qds ďai,jp||x´Υjy|| ` ||y´Υix||q
for everytPI. Take sup in the above inequality to find that αpx,yqdpΥix,Υjyq “ ||Υx´Υy||
ďai,jp||x´Υjy|| ` ||y´Υix||q “ai,jpdpx,Υjyq `dpy,Υixqq.
The propertiespDqandpEqyield that propertiespiiiqandpivqof Theorem1are satisfied. Obviously, the propertypvqof Theorem1holds. Thus, by that theorem,tΥnuhave a common fixed point, that is, the system of integral Equation (11) having a solution.
Author Contributions:Writing–original draft, H.I., B.M., C.P. and V.P.; Writing–review and editing, H.I., B.M., C.P.
and V.P. All authors have read and agreed to the published version of the manuscript.
Funding:This research received no external funding.
Conflicts of Interest:The authors declare no conflict of interest.
References
1. Ciri´c, L.B. On a family of contractive maps and fixed points.´ Publ. Inst. Math.1974,17, 45–51.
2. Allahyari, R.; Arab, R.; Haghighi, A.S. Common fixed point theorems for infinite families of contractive maps.
Math. Sci.2015,9, 199–203. [CrossRef]
3. Nadler, S.B., Jr. Multi-valued contraction mappings.Pac. J. Math.1969,30, 475–488. [CrossRef]
4. Amini-Harandi, A.; O’Regan, D. Fixed point theorems for set-valued contraction type maps in metric spaces.
Fixed Point Theory Appl.2010,2010, 390183. [CrossRef]
5. I¸sık, H.; Ionescu, C. New type of multivalued contractions with related results and applications.U.P.B. Sci. Bull.
Ser. A2018,80, 13–22.
6. I¸sık, H.; Parvaneh, V.; Mohammadi, B.; Altun, I. Common fixed point results for generalized Wardowski type contractive multi-valued mappings.Mathematics2019,7, 1130. [CrossRef]
7. Kaddouri, H.; I¸sık, H.; Beloul, S. On new extensions ofF-contraction with application to integral inclusions.
U.P.B. Sci. Bull. Ser. A2019,81, 31–42.
8. Saleem, N.; Vujakovic, J.; Baloch, W.U.; Radenovic, S. Coincidence point results for multivalued Suzuki type mappings usingθ-contraction inb-metric spaces.Mathematics2019,7, 1017. [CrossRef]
9. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems forα-ψ-contractive type mappings.Nonlinear Anal.2012,75, 2154–2165. [CrossRef]
10. Hasanzade Asl, J.; Rezapour, S.; Shahzad, N. On fixed points ofα-ψ-contractive multifunctions. Fixed Point Theory Appl.2012,2012, 212.
11. Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points ofα-ψ- ´Ciri´c generalized multifunctions.
Fixed Point Theory Appl.2013,2013, 24. [CrossRef]
12. Bunyawat, A.; Suantai, S. Common fixed points of a countable family of multivalued quasinonexpansive mappings in uniformly convex Banach spaces.Int. J. Comput. Math.2010, 2274–2279.
13. Bunyawat, A.; Suantai, S. Common fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces.Bull. Iran. Math. Soc.2013, 1125-1135.
14. Sagar, P.; Malhotra, S.K. Common fixed points of a countable family of I-nonexpansive multivalued mappings in Banach spaces.Am. J. Appl. Math. Stat.2014,2, 239–243. [CrossRef]
15. Wangkeeree, R. Implicit iteration process for finite family of nonexpansive nonself-mappings in Banach spaces.
Int. J. Math. Sci. Engg. Appl.2007,1, 1–12.
16. Zuo, Z. Iterative approximations for a family of multivalued mappings in Banach spaces.J. Math. Inequal.2010, 4, 549–560. [CrossRef]
17. Amini-Harandi, A. Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 2010,72, 132–134.
[CrossRef]
18. Mohammadi, B.; Rezapour, S. Endpoints of Suzuki type quasi-contractive multifunctions.U.P.B. Sci. Bull. Ser. A 2015,77, 17–20.
19. Moradi, S.; Khojasteh, F. Endpoints of multi-valued generalized weak contraction mappings.Nonlinear Anal.
2011,74, 2170–2174. [CrossRef]
c
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).