• Tidak ada hasil yang ditemukan

Class 08 1, , n X X  ln , ,ln n X X  λ lnμ 0.5ln(1 δ ) E

N/A
N/A
Protected

Academic year: 2024

Membagikan "Class 08 1, , n X X  ln , ,ln n X X  λ lnμ 0.5ln(1 δ ) E"

Copied!
3
0
0

Teks penuh

(1)

Seoul National University Instructor: Junho Song Dept. of Civil and Environmental Engineering [email protected]

457.646 Topics in Structural Reliability In-Class Material: Class 08

III. Structural Reliability (Component)

Joint Probability Distribution Models

Joint Lognormal

1

, ,

n

X

X

are jointly lognormal if

ln X

1

,

, ln X

n are jointly _________

a) Parameters

[ ]

2

λi

= E = ln

μi

− 0.5 ln(1 +

δi

)

[ ]

2 2 2

ξi

= Var = ln(1 +

δi

) ( ≅

δi

for

δ

1)

ln ,ln

ρ

1 ln(1

ρ δ δ

)

ξ ξ

i j

X X ij i j

i j

= +

b) Properties

• Completely defined in terms of ( ) & ( )

• All lower order distribution are jointly

• Conditional distribution are jointly

• Uncorrelated ⇄ S.I.

• Product / Quotient of jointly lognormal r.v.’s follows

,ln

1

ρ δ ρ

ξ

i j

X X j ij

i

=

General Joint Distribution Forms e.g. Johnson & Kotz (1976)

⇒ on multivariate prob. distribution models

Joint Distribution by conditioning (e.g. Bayesian Networks)

1 1 1

( , ,

n

) (

n

, ,

n

)

f x

x = f x x

x

×

Joint Distribution model with : Prescribed marginals: ,i=1,,n and correlation coefficient matrix :

(2)

Seoul National University Instructor: Junho Song Dept. of Civil and Environmental Engineering [email protected]

• Read CRC Ch.14

See Liu & Kiureghian (1986) a) Morgenstern

b) Nataf

※ “Copula”: formula to construct joint PDF with marginal distributions (Review by Jongmin Park (SNU): Term Project Report in 2014)

a) Morgenstern distribution

1

( ) ( ) 1

α

[1 ( )][1 ( )]

i i j

n

X i ij X i X j

i j i

F F x F x F x

<

=

 

= ⋅ +  − − 

 ∑ 

X x

Q) Can we derive ( )

Xi i

F x from

F

X

( )

x ?

i.e.

x x

2

,

3

,

, x

n

then

F

X

( )

x

= ?

Q) Can we describe dependence using αij?

( , )

i j

X X i j

F x x =

( , )

i j

X X i j

f x x

=

{ }

( ) ( ) 1

α

[1 2 ( )][1 2 ( )]

i j i j

X i X j ij X i X j

f x f x F x F x

= ⋅ ⋅ + − −

α

ij

⇒ ≤ ≤

α

0

α

0

ij ij

 =

 ≠

Therefore, αij is a parameter that represents (corr coeff.) But αij ρij

Lin & Der Kiureghian (1986) showed μ μ

ρ ( , )

σ σ i j

j j

i i

ij X X i j i j

i j

x x

f x x dx dx

∞ ∞

−∞ −∞

 − 

 − 

=

∫ ∫

   ijQ Qi j

= ⇒ ρij ≤0.30

Where μ

( ) ( ) 0.28

σ i i

i i

i X i X i i

i

Q x F x f x dx

−∞

 −  

=    ≈

 

 

(3)

Seoul National University Instructor: Junho Song Dept. of Civil and Environmental Engineering [email protected]

Table 1: selected distribution Table 2:

Q

i

Table 3 : maximum

ρ

ij

⇒ In summary, using Morgenstern’s model, you cannot describe X Xi, j whose ρij >0.30

b) Nataf model (Nataf, 1962) (“Gaussian Copula”)

~ ( ), 1, ,

[

ρ

]

Xi i

ij

F x i = n

=

X

R

(1)

(2) Nataf

 →

←

'

~ ( )

[

ρij

] N

=

Z 0, R'

R'

Transformation to Z

Z

i

=

Why?

( ) ( )

( ) ( ) ( ) = ( )

i i

i i

i

i

Z i X i

i

Z i X i

X

f z f x dx dz

f z f x

F

= ⋅

⋅ = ⋅

Φ

Referensi

Dokumen terkait