Seoul National University Instructor: Junho Song Dept. of Civil and Environmental Engineering [email protected]
1
457.646 Topics in Structural Reliability In-Class Material: Class 04
ΙΙ
-5. Multiple Random Variables “Joint” Probability Functions e.g.
P X ( ≤ 20)
=∫ dx
=
P ( ∩ ) = ?
Need more information than ( ) and ( )
① Joint Cumulative Distribution Function (CDF) (Discrete/Continuous) ↔ cf. __________ CDF
( , ) ( )
F
XYx y ≡ P
•
F
XY( −∞ −∞ = , )
•
F
XY( , ) ∞ ∞ =
•
F
XY( −∞ , ) y
•
( , ) ( ) ( )
F
XY∞ y = P ∩ = P
=
② Joint Probability Mass Function (discrete r.v’s) ↔ cf. __________ PMF .
(a) Definition :
P
XY( , ) x y ≡ P ( , )
(b)
F
XY( , ) a b = ∑
(c) Conditional PMF
( )
P
X Yx y ≡ = =
(d)
P
XY( , ) x y → P x
X( ), ( ) ? P y
YQuestion: Which one more likely?
Case A: Heavy & Tall
Case B: Light & Tall
Seoul National University Instructor: Junho Song Dept. of Civil and Environmental Engineering [email protected]
2 ( )
P x
X=
=
∑
∑
⇒( ) rule
(e) If X & Y are statically independent,
( )
P
X Yx y =
( )
Y( ) P
Y Xy x P y
⇔
( , ) P
XYx y
⇔
* In-class material on Joint PMF
③ Joint PDF (continuous r.v’s)
, 0
( , ) lim
XY x y
f x y
∆ ∆ →
=
(a) Joint cumulative distribution function (CDF)
( , ) ( , )
F
XYx y ≡ P X ≤ x Y ≤ y
= ∫
( , ) f
XYx y =
(b)
P a ( < X ≤ b c , < ≤ Y d ) =
(c) Conditional PDF
( )
f
X Yx y
0
( )
lim
x
P x X x x
∆ →
x
< ≤ + ∆
= ∆
Can show
=
※ Multiplication rule
f
XY( , ) x y =
(s.i
f
XY( , ) x y =
)Seoul National University Instructor: Junho Song Dept. of Civil and Environmental Engineering [email protected]
3
(d) Joint PDF→marginal PDF?( )
f
Xx =
=
∫
∫