• Tidak ada hasil yang ditemukan

Development of Al based metallic glasses

N/A
N/A
Protected

Academic year: 2024

Membagikan "Development of Al based metallic glasses"

Copied!
35
0
0

Teks penuh

(1)

Development of Al based metallic glasses

Current research issues

e-mail : [email protected] Seoul National University

ESPark Research Group.

W. Kim

Advanced Research of Structural Materials

Opening seminar

2016. 03. 21

(2)

Contents

Motivation : Al-based MG for Ag paste media

Al based Metallic glass & Alloy design

 High entropy effect

Statistical analysis of shear band by nano-indentation

EXTRA : Phase separation metallic glass (Al-Pb)

(3)

Motivation

Al-based metallic glass frit for Ag paste

(4)

1) Single crystal Si wafer 2) dopingPN junction

4) SiNx deposite with PECVD

anti reflection layer 증착

3) Plasma etching

5) metallization

대면적 실리콘 태양전지 공정

“Screen printing process” 적용해최대 효율20%의 태양전지 제조가능

Screen printing

Screen printing process

fine-mesh를 이용하여Ag paste를 미세 도포 하는 공정법

1) Screen Printing을 통한 Ag paste의 미세 도포

Ag paste

: silver + oxide + 유기물 1) Screen printing process

: Ag paste 미세 도포 2) 도포된Ag paste의 소결

: 은 전극-반도체간 전기적 접합

ESPark Research Group 2016-03-21

Screen printing Si solar cell

Ag

2) 소결을 통한 은 전극/Si 반도체 전기적 접합 가능

800 ℃ 급속 소결

(Silver) 전극 산화물 층

Si 반도체

(5)

Role of PbO

2

계 Oxide glass

PbO2oxide 적용에 따른 장점 : Ag paste의 소결능 향상 전기전도성 증가

1) 소결능 향상접합면적 증가 통한 전도성↑ 2) SiNx건식 에칭 가능실질적인 전극 접합 가능

pure Ag paste

8 ㎛

<Ag 분말 단독 소결:접합면적↓> <Oxide 첨가 소결:접합면적↑>

Bulk Ag Oxide glass layer

3

PbO2 oxide 적용에 따른 단점 :전기저항의 증가 소자 효율 감소 1) Oxide 적용 따라 최대2% 효율 저하 발생

Bulk Ag

2) Ag crystal 석출 따른 전자 산란 발생

태양전지 효율 증가 위해 전기 저항성 높은

Oxide 대체 물질 개발 요구

<Oxide 의한silver 결성상의 석출>

Ag 결정상(최대 크기1㎛)

전자 산란 유발

전기전도도 감소

소자 효율 감소

<요소별 태양전지 효율 감소율>

<Oxide의 건식에칭 메커니즘>

ESPark Research Group 2016-03-21

(6)

Metallic glass 를 적용한 신개념 Ag paste 개발

back plane MG/Ag pasteMetallic glass 적용 통한 solar cell 효율0.1% 개선 가능

Al계 비정질 합금 적용한 front plane용 Ag paste 개발을 목표로 함

Oxide Glass Metallic Glass

스크린 프린팅 태양전지의 에너지 변환 효율을 획기적으로 개선 접촉면에 Ag 결정의 고른 분포

를 통한 접촉저항 감소 Ag 전극과 Si emitter 층의 두께 감소

Ag powder의 소결 능력 향상

ref: APL, 98 (2011) 222112

ESPark Research Group 2016-03-21

(7)

우수한 열적특성

Tx↑, Tm↓)

가진

Al

계 비정질 합금 개발 요구

Wetting layer

(1) (2)

Ref : Scientific reports, 3 2185 (2013)

과냉각액체영역 증가 통해 Cavity filling에 따른 SCLR의젖음성 증가(θ↓)

젖음성 증가 위해넓은 과냉각 액체영역 가진 합금 설계 요구

𝟐𝟒𝛈𝐝

𝟖𝛄𝐜𝐨𝐬𝛉

𝚫𝐓𝐱

𝐑𝐡𝐞𝐚𝐭

= 𝐭

𝐒𝐂𝐋

우수한 열적 특성 가진 Al 계 비정질 합금 개발

ESPark Research Group 2016-03-21

급격한 점성 감소(super cooled liquid)

Ag powder 내부로 모세관 확산

Ag paste 소결능 및 전극접합성 향상

(8)

Metallic glasses

(9)

Metallic glasses

Glass forming ability

Activation energy for nucleation ↑

High initial viscosity of liquid

High increase rate of viscosity

ESPark Research Group 2016-03-21

Crystallization

log η

Temperature

1storder transition

2ndorder transition

Reversible

Glass transition

Reversible 2nd order transition

Tm Tg

(10)

비정질 합금의 과냉각 액체 영역을 이용한

Thermoplastic forming (TPF)

Thermo-plastic deformation

Tx Tg

ESPark Research Group 2016-03-21

(11)

200 nm

수준의 리본 표면

roughness → TPF

공정을 통해 수

nm

수준으로 평탄화 구현 고온 환경 인장/압축 장치를 이용한

TPF 평탄화 공정 : Zr50Cu40Al10 eutectic ribbon

0 20 40 60

-100 -50 0 50 100

Height (nm)

Distance (μm) Avg. roughness : 3.27 nm

200 1000

62.5

125 0

50

100

X axis (μm)

Y axis (μm) Z axis (nm)

0 20 40 60 80

-400 -200 0 200 400

Height (nm)

Distance (μm) Avg. roughness : 203nm

1000

0 500

62.5

125

0 50

100

X axis (μm) Y axis (μm)

Z axis (nm)

Before TPF

After TPF on flat glass

Thermo-plastic deformation

ESPark Research Group 2016-03-21

(12)

0 50 100 150 200 250 300 0

200 400 600 800 1000

Elastic modulus (GPa)

Glass transition Temperature (T g)

0 1 2 3 4 5 6

Fracture Strength (GPa)

W-based MG Fe-based BMG

Ni-based BMG Ti-based BMG

Zr-based BMG Cu-based BMG

Al-based MG Mg-based BMG Ca-based BMG

For the conventional application

→ relatively low cost elements (Al>80at%)

→ Good mechanical properties (Strength > 1GPa)

Metallic glasses

ESPark Research Group 2016-03-21

(13)

Al-based Metallic glasses

: Development of thermal properties

(14)

New Concept for Al-based MG design

Al

Ni RE

ΔHmix< 0 kJ/mol ΔTx < 20K

High entropy effect by multiple RE

1. complex RE complex bonding nature 2. liquid stability ↑

3. Dramatic increase of ΔTx

ΔHmix Al Ni Ce La Nd Y Gd Er

Al -- -22 -38 -38 -38 -38 -39 -39

Ni -- -- -28 -27 -30 -31 -31 -31

Addition of multi-component rare earth elements

TM RE

Al

TEM image of amorphous matrix

Bonding nature of Al-based MG

ESPark Research Group 2016-03-21

Ref: scripta, 65 (2011) 755

Coordination # Al-TM : 7~8 Al-RE : 16~18

(15)

→ ΔT

x

has linear relationship with ψ of RE elements.

(Al

84

Ni

10

Y

6

ΔT

x

= 21.5K)

1.10 1.12 1.14 1.16 1.18 1.20 1.22 17

18 19 20 21 22

Supercooled Liquid Region Tx (K)

Electronegativity of RE (Pauling units)

La

Ce Gd

Y Nd

Al-Ni-RE ternary system

500 520 540 560 580 600 620

Heat Flow(arbitrary unit)

Temperature (K)

La Ce Nd Gd Y

Tg

Heating rate : 40K/min

Tx

ESPark Research Group 2016-03-21

Al84Ni10RE6 amorphous alloy system

(16)

Multicomponent Al-based MG

520 540 560 580 600 620

Temperature (K)

Heat Flow (arbitrary unit) La100

La50Ce50

La33.3Ce33.3Nd33.3 La25Ce25Nd25Gd25 La20Ce20Nd20Gd20Y20

Al84Ni10RE6

Tg ΔTx Tx

1.10 1.12 1.14 1.16 1.18 1.20 1.22

18 21 24 27

Tx (K)

Electronegativity (Pauling units)

Al84Ni10RE

6 La100 Ce100

Gd100

Y100 La50Ce50

La33.3Ce33.3Nd33.3 La25Ce25Nd25Gd25 La20Ce20Nd20Gd20Y20

Nd100

High entropy effect

ESPark Research Group 2016-03-21

Al84Ni10RE6 amorphous alloy system

→ ΔT

x

increase with number of RE elements (Al

84

Ni

10

(LaCeNdGdY)

6

ΔT

x

= 25.5K)

Q : Increase of ΔT

x

= Liquid stability & viscosity change?

(17)

Thermomechanical analyzer (TMA)

(18)
(19)

𝜌𝜕𝒗

𝜕𝑡+ 𝜌𝑣 ∙ 𝛻𝒗 = −𝛻𝑝 + 𝜂𝛻2𝒗 +1

3𝜂𝛻𝛻 ∙ 𝒗 The general vector eq. of motion of a Newtonian fluid

𝛿𝑣𝑟/𝛿𝑡 = 0(Steady state flow)

𝐹 = −2𝜋𝑑ℎ 𝑑𝑡

3𝜂 3 0

𝑅

𝑅2− 𝑟2 𝑟 𝑑𝑟

𝐹𝑜𝑟 𝑐𝑎𝑠𝑒 𝑎 , 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐹𝑜𝑟 𝑐𝑎𝑠𝑒 𝑏 , 𝑅 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡 𝑏𝑢𝑡 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑛𝑡 𝐹 = −3𝜋𝜂𝑅4

2ℎ3 𝑑ℎ 𝑑𝑡

𝐹 = −3𝜂𝑉2 2𝜋ℎ5

𝑑ℎ 𝑑𝑡

𝑅 > 10 ℎ (Thin plate sample)

(𝑆𝑡𝑒𝑓𝑎𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛)

(𝐹𝑟𝑜𝑚 𝐷𝑖𝑒𝑛𝑒𝑠 𝑎𝑛𝑑 𝐾𝑙𝑒𝑚𝑚)

Case (a).

excess of material is squeezed out

Case (b).

Squeezing sample of constant volume

Viscosity in compression : Parallel plate rheometer (10

5

~10

9

pa∙s)

ESPark Research Group 2016-03-21

𝜼 = 𝝈/𝟑 𝜺

Applied Stefan equation

(20)

Viscous flow of Super cooled liquid

NEXT STEP

By applying of Stephan equation

 Calculation of viscosity

Case (b). Squeezing sample of constant volume

ESPark Research Group 2016-03-21

Strain rate

450 500 550

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

Strain (%)

Temperature (K) Heating rate : 10K/min

TMA mode : expansion

Al84Ni10La6

Al84Ni10(LaCeNd)6 Al84Ni10(LaCeNdGdY)6

Tx Tx Tx Tg Tg Tg

Heating rate 10K/min Tg. TMA Tx. TMA Al84Ni10La6 546.5 557.9K Al84Ni10(LaCeNd)6 539.9 552.1K Al84Ni10(LaCeNdGdY)6 538.3 549.3K

Strain of Super cooled liquid

(21)

Heating rate : 0.167K/sec TMA mode : expansion

Al84Ni10La6 Al84Ni10LaCeNd6 Al84Ni10LaCeNdGdY6

510 520 530 540 550 560

1E9 1E10 1E11 1E12

Viscosity(Pa·s)

Temperature (K)

Increase of ΔT

x

 Decrease of viscosity

 Good for TPF & precise fabrication

Viscous flow of Super cooled liquid

ESPark Research Group 2016-03-21

(22)

𝜂 = 𝜂0exp(𝐷 ∙ 𝑇0 𝑇 − 𝑇0)

Kinetic fragility

ESPark Research Group 2016-03-21

0.90 0.95 1.00

1E9 1E10 1E11 1E12

Viscosity (Pa·s)

Tg*/T

La LaCeNd LaCeNdGdY

Strong

Fragility Strain of Super cooled liquid

Fragility

: liquids are classified as strong glass & fragile glass (by D. angell)

good glass forming alloy : strong liquid with a high viscosity

Fragile glass

1. Softening effect

2. Multiple shear band

(23)

Effect of free volume on mechanical properties

 Statistical analysis by complexity(SOC)

(24)

Plastic deformation of BMG

Shear bursting : Sum of free volume

Free volume

Interaction between matrix & Free volume & 2nd phase

Control the ductility of metallic glass

: multiple shear band or decrease the cut off size

ESPark Research Group 2016-03-21

<Serration by shear band deformation>

(25)

Self-organization

Self organization

자기조직화

무질서 복잡계속의 규칙성

Plan & Design  Organization

Ex) parts + parts + parts + = machine 조직화 하고 난 뒤 조립

Interactions of local parts  Organization Ex) Cells + Cells + Cells = Organics

만들어지고 나서 조직화

ESPark Research Group 2016-03-21

각각의 개발적은 크고 작은 사건

ex)earthquake, Comet impact, car crash, 서로간에 영향은 주지 않으나, 큰 흐름에서 보았을때, 사건발생의 규칙성이 있다.

complexity & SOC

(26)

Self-organized critical

𝑃 > 𝑆 = 𝐴𝑆

−𝛽

exp(

−𝑆𝑆

𝑐

)

Grain size effect the dislocation avalanche size

Beta : scaling exponent Sc: cut off of strain

Single crystal (β=1), >> grain with 1.92(β=0.35)

High beta value : close to self-organized state

Jamming state : statistically high level of interactions btw disl, matrix

Low beta value : relatively chaotic state Unjamming state : low level of interactions

ESPark Research Group 2016-03-21

(27)

Pop-in of nano-indentation

Evaluation SOC in metallic glass

𝑃 > 𝑆 = 𝐴𝑆

−𝛽

exp

−𝑆

𝑆𝑐 2

ESPark Research Group 2016-03-21

0.01 1E-3

0.01 0.1 1

Cumulative probability distribution, P(>S)

Strain burst size S

β : scale exponent

high β value = SOC state : Jamming state

low β value = Chaotic state : Unjamming state

(28)

𝜂 = 𝜂0exp(𝐷 ∙ 𝑇0 𝑇 − 𝑇0)

Kinetic fragility

ESPark Research Group 2016-03-21

0.90 0.95 1.00

1E9 1E10 1E11 1E12

Viscosity (Pa·s)

Tg*/T

La LaCeNd LaCeNdGdY

Strong

Fragility Strain of Super cooled liquid

Fragility

: liquids are classified as strong glass & fragile glass (by D. angell)

good glass forming alloy : strong liquid with a high viscosity

Fragile glass

1. Softening effect

2. Multiple shear band

(29)

0.01 10-2

10-1 100

Cumulative probability distribution, P(>S)

Strain burst size Sc

La LaCeNd LaCeNdGdY

𝑃(> 𝑆) = 𝐴𝑆−𝛽exp −𝑆𝑆

𝑐 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(scaling exponent)

La LaCeNd LaCeNdGdY

0.000 0.005 0.010 0.015 0.020 0.025

Cut off, Sc

Statistical analysis depending on fragility

Fragility ↑ Free volume↑

Chaotic deformation Multicomponent High entropy effect

Al84Ni10La6 Al84Ni10LaCeNdGdY6

ESPark Research Group 2016-03-21

Effect of free volume on

(30)

Phase separated Al-based metallic glass

 Bending & fatigue test

(31)

ESPark Research Group

Al82.87Ni4.88Co1.95Y7.8Pb2.5 상분리 합금 SEM 이미지

Al-Pb 상분리 합금을 이용한 Ag paste

Al-Pb phase diagram

Al-Pb

이원계 시스템 전체 조성에서

miscibility gap

보유

: Al-Pb고용체의 부재로 인한 상분리 현상

상분리 된

Pb-rich phase : SiNx

건식 에칭 메커니즘 보유 예상

Al – Pb

상분리 비정질 합금 개발

건식 에칭 가능

Al

계 비정질 신합금

2015-03-02

Ref: APL, 93 (2008) 131907

(32)

ESPark Research Group

(Al84Ni10MM6)97Pb3DSC 열분석 결과 Al-Pb상분리 합금SEM 이미지

AlNiMM 비정질 시스템에Pb 소량 첨가를 통해Pb-rich phase 상분리 가능 확인

300 nm 수준의Pb-rich phase 다수 석출 : SiNx 건식 에칭 가능여부 확인 요구

Al – Pb

상분리 비정질 합금 개발

추후 설계 방향

: Pb

절감 친환경

Ag paste 개발

Pb rich Al-Pb상분리 합금 개발

Pb rich phase의 용융 통한SiNx 건식에칭 가능

PbO2 완전 대체 가능Al-Pb상분리 합금 개발

최종Pb분율 감소 통한 친환경Ag paste 개발 가능

2015-03-02

200 300 400 500

Heat Flow (W/g)

Temperature ()

Tm: 314.73

Tx: 267.35

Heating rate : 40K/min As-quenched

Annealed

1㎛

Pb-rich phase

Al-Pb 상분리 합금을 이용한 Ag paste

(33)

Ω SUS 기판

Ag paste

압착

압착

Bending test

Ω SUS 기판

Ag paste

반복변형 반복변형

Fatigue test

(a) Oxide glass 적용

(b) 다성분계 Al계 MG Frit 적용 (c) Pb 상분리 Al계 MG Frit 적용

𝜀(%) =

(𝐷−𝑡)𝑡

× 100

t : 시편 두께 / D : plate간 간격

Bending / Fatigue test for flexible

Al – Pb

상분리 비정질 합금

: Flexible Ag paste

로써의 가능성

ESPark Research Group 2015-03-02

(34)

ESPark Research Group 2015-03-02

3.0 2.5 2.0 1.5 1.0 0.5

0.010 0.015 0.020 0.06

Distance between plate (cm)

Resistance (Ω) / SUS bar with Ag paste

0.0 0.2 0.4 0.6 0.8 1.0

Strain (%)

(1)Oxide frit적용

(2)다성분계 Al계MG Frit 적용

(3) Pb상분리Al-계MG Frit 적용 Closed point : 전기저항

Opened point : strain

0.3Ω ↑

0 20000 40000 60000 80000

0.00 0.02 0.04 0.06 0.08

Electronic resistance (Ω)

Fatigue lifetime (Number of cycles) (1)Oxide frit적용

(2)다성분계 Al계MG Frit 적용 (3) Pb상분리Al-계MG Frit 적용

Bending / Fatigue test for flexible

Bending / fatigue

따른

Ag paste

의 전기저항 변화

Oxide glass frit 적용

: brittle oxide로 인해 낮은 탄성한계 및 피로저항성

Pb 상분리Al계 비정질 합금

: Pb상의 낮은 융점으로 인해 젖음성 항샹 : 금속개재물에 의한 유연성 증가

상분리

Pb Al-based MG

적용 통해

유연성 높은

Ag paste의 개발 가능
(35)

Thanks for your kind attention

Referensi

Dokumen terkait

While the design validation of the online learning was done by using the criteria of ISO 19796-1 based e-learning quality developed by Cahyani et al (2010) and a

Besides, the understanding of hikmah tasyri’ will reveal the beauty of Islamic shari’a and the truth of its teachings.24 Based on the four definitions of hikmah tasyri’ presented by

THE PRINCIPLE OF NATURAL RESOURCES MANAGEMENT BASED ON MAQASID AL-SHARI’AH: A CONCEPTUAL FRAMEWORK Raudha Md Ramli Academy of Contemporary Islamic Studies ACIS Universiti

Schematic diagram of the sensing principle based on the redox cycling of [FeCN6]3−/[FeCN6]4−between enzyme and electrode surfaces at nano-sized gold nanoparticle AuNP/carbon

2 sequential 47, Fall & Winter 2021 1 A Study of Attar's Tazkereh al-Awliya and Mathnawis based on Genet's Hypertext Theory Zahra Pirhayati Ali Heydari** Abstract Tazkereh

MASHUD ET AL.: DESIGN AND DEVELOPMENT OF MICROCONTROLLER BASED PORTABLE DIGITAL SURFACE CONTAMINATION MONITOR 43 Figure 1: Block diagram of the developed system Figure 2: Complete

The development of the ADDIE model is also used in research based on developing learning media Dwitiyanti et al., 2020 Figure 2 Flowchart model ADDIE The selection of the ADDIE model

Study related development module based education character who has carried out by Wahyu Kurniyawan et al., 2021, showed that development module integrated education character after