Development of Al based metallic glasses
Current research issues
e-mail : [email protected] Seoul National University
ESPark Research Group.
W. Kim
Advanced Research of Structural Materials
Opening seminar
2016. 03. 21
Contents
Motivation : Al-based MG for Ag paste media
Al based Metallic glass & Alloy design
High entropy effect
Statistical analysis of shear band by nano-indentation
EXTRA : Phase separation metallic glass (Al-Pb)
Motivation
Al-based metallic glass frit for Ag paste
1) Single crystal Si wafer 2) dopingPN junction
4) SiNx deposite with PECVD
anti reflection layer 증착
3) Plasma etching
5) metallization
대면적 실리콘 태양전지 공정
“Screen printing process” 적용해최대 효율20%의 태양전지 제조가능
Screen printing
Screen printing process
fine-mesh를 이용하여Ag paste를 미세 도포 하는 공정법
1) Screen Printing을 통한 Ag paste의 미세 도포
Ag paste
: silver + oxide + 유기물 1) Screen printing process
: Ag paste 미세 도포 2) 도포된Ag paste의 소결
: 은 전극-반도체간 전기적 접합
ESPark Research Group 2016-03-21
Screen printing Si solar cell
Ag
2) 소결을 통한 은 전극/Si 반도체 전기적 접합 가능
800 ℃ 급속 소결
은 (Silver) 전극 산화물 층
Si 반도체
Role of PbO
2계 Oxide glass
PbO2계oxide 적용에 따른 장점 : Ag paste의 소결능 향상 전기전도성 증가
1) 소결능 향상접합면적 증가 통한 전도성↑ 2) SiNx건식 에칭 가능실질적인 전극 접합 가능
pure Ag paste
8 ㎛
<Ag 분말 단독 소결:접합면적↓> <Oxide 첨가 소결:접합면적↑>
Bulk Ag Oxide glass layer
3㎛
PbO2계 oxide 적용에 따른 단점 :전기저항의 증가 소자 효율 감소 1) Oxide 적용 따라 최대2% 효율 저하 발생
Bulk Ag
2) Ag crystal 석출 따른 전자 산란 발생
태양전지 효율 증가 위해 전기 저항성 높은
Oxide 대체 물질 개발 요구<Oxide 의한silver 결성상의 석출>
Ag 결정상(최대 크기1㎛)
전자 산란 유발
전기전도도 감소
소자 효율 감소
<요소별 태양전지 효율 감소율>
<Oxide의 건식에칭 메커니즘>
ESPark Research Group 2016-03-21
Metallic glass 를 적용한 신개념 Ag paste 개발
back plane용 MG/Ag paste에Metallic glass 적용 통한 solar cell 효율0.1% 개선 가능
Al계 비정질 합금 적용한 front plane용 Ag paste 개발을 목표로 함
Oxide Glass Metallic Glass
스크린 프린팅 태양전지의 에너지 변환 효율을 획기적으로 개선 접촉면에 Ag 결정의 고른 분포
를 통한 접촉저항 감소 Ag 전극과 Si emitter 층의 두께 감소
Ag powder의 소결 능력 향상
ref: APL, 98 (2011) 222112
ESPark Research Group 2016-03-21
우수한 열적특성
(ΔTx↑, Tm↓)가진
Al계 비정질 합금 개발 요구
Wetting layer
(1) (2)
Ref : Scientific reports, 3 2185 (2013)
과냉각액체영역 증가 통해 Cavity filling에 따른 SCLR의젖음성 증가(θ↓)
젖음성 증가 위해넓은 과냉각 액체영역 가진 합금 설계 요구
𝟐𝟒𝛈𝐝
𝟖𝛄𝐜𝐨𝐬𝛉
≤
𝚫𝐓𝐱𝐑𝐡𝐞𝐚𝐭
= 𝐭
𝐒𝐂𝐋우수한 열적 특성 가진 Al 계 비정질 합금 개발
ESPark Research Group 2016-03-21
급격한 점성 감소(super cooled liquid)
Ag powder 내부로 모세관 확산
Ag paste 소결능 및 전극접합성 향상
Metallic glasses
Metallic glasses
Glass forming ability
Activation energy for nucleation ↑
High initial viscosity of liquid
High increase rate of viscosity
ESPark Research Group 2016-03-21
Crystallization
log η
Temperature
1storder transition
2ndorder transition
Reversible
Glass transition
Reversible 2nd order transition
Tm Tg
비정질 합금의 과냉각 액체 영역을 이용한
Thermoplastic forming (TPF)Thermo-plastic deformation
Tx Tg
ESPark Research Group 2016-03-21
200 nm
수준의 리본 표면
roughness → TPF공정을 통해 수
nm수준으로 평탄화 구현 고온 환경 인장/압축 장치를 이용한
TPF 평탄화 공정 : Zr50Cu40Al10 eutectic ribbon0 20 40 60
-100 -50 0 50 100
Height (nm)
Distance (μm) Avg. roughness : 3.27 nm
200 1000
62.5
125 0
50
100
X axis (μm)
Y axis (μm) Z axis (nm)
0 20 40 60 80
-400 -200 0 200 400
Height (nm)
Distance (μm) Avg. roughness : 203nm
1000
0 500
62.5
125
0 50
100
X axis (μm) Y axis (μm)
Z axis (nm)
Before TPF
After TPF on flat glass
Thermo-plastic deformation
ESPark Research Group 2016-03-21
0 50 100 150 200 250 300 0
200 400 600 800 1000
Elastic modulus (GPa)
Glass transition Temperature (T g)
0 1 2 3 4 5 6
Fracture Strength (GPa)
W-based MG Fe-based BMG
Ni-based BMG Ti-based BMG
Zr-based BMG Cu-based BMG
Al-based MG Mg-based BMG Ca-based BMG
For the conventional application
→ relatively low cost elements (Al>80at%)
→ Good mechanical properties (Strength > 1GPa)
Metallic glasses
ESPark Research Group 2016-03-21
Al-based Metallic glasses
: Development of thermal properties
New Concept for Al-based MG design
Al
Ni RE
ΔHmix< 0 kJ/mol ΔTx < 20K
High entropy effect by multiple RE
1. complex RE complex bonding nature 2. liquid stability ↑
3. Dramatic increase of ΔTx
ΔHmix Al Ni Ce La Nd Y Gd Er
Al -- -22 -38 -38 -38 -38 -39 -39
Ni -- -- -28 -27 -30 -31 -31 -31
Addition of multi-component rare earth elements
TM RE
Al
TEM image of amorphous matrix
Bonding nature of Al-based MG
ESPark Research Group 2016-03-21
Ref: scripta, 65 (2011) 755
Coordination # Al-TM : 7~8 Al-RE : 16~18
→ ΔT
xhas linear relationship with ψ of RE elements.
(Al
84Ni
10Y
6ΔT
x= 21.5K)
1.10 1.12 1.14 1.16 1.18 1.20 1.22 17
18 19 20 21 22
Supercooled Liquid Region Tx (K)
Electronegativity of RE (Pauling units)
La
Ce Gd
Y Nd
Al-Ni-RE ternary system
500 520 540 560 580 600 620
Heat Flow(arbitrary unit)
Temperature (K)
La Ce Nd Gd Y
Tg
Heating rate : 40K/min
Tx
ESPark Research Group 2016-03-21
Al84Ni10RE6 amorphous alloy system
Multicomponent Al-based MG
520 540 560 580 600 620
Temperature (K)
Heat Flow (arbitrary unit) La100
La50Ce50
La33.3Ce33.3Nd33.3 La25Ce25Nd25Gd25 La20Ce20Nd20Gd20Y20
Al84Ni10RE6
Tg ΔTx Tx
1.10 1.12 1.14 1.16 1.18 1.20 1.22
18 21 24 27
Tx (K)
Electronegativity (Pauling units)
Al84Ni10RE
6 La100 Ce100
Gd100
Y100 La50Ce50
La33.3Ce33.3Nd33.3 La25Ce25Nd25Gd25 La20Ce20Nd20Gd20Y20
Nd100
High entropy effect
ESPark Research Group 2016-03-21
Al84Ni10RE6 amorphous alloy system
→ ΔT
xincrease with number of RE elements (Al
84Ni
10(LaCeNdGdY)
6ΔT
x= 25.5K)
Q : Increase of ΔT
x= Liquid stability & viscosity change?
Thermomechanical analyzer (TMA)
𝜌𝜕𝒗
𝜕𝑡+ 𝜌𝑣 ∙ 𝛻𝒗 = −𝛻𝑝 + 𝜂𝛻2𝒗 +1
3𝜂𝛻𝛻 ∙ 𝒗 The general vector eq. of motion of a Newtonian fluid
𝛿𝑣𝑟/𝛿𝑡 = 0(Steady state flow)
𝐹 = −2𝜋𝑑ℎ 𝑑𝑡
3𝜂 ℎ3 0
𝑅
𝑅2− 𝑟2 𝑟 𝑑𝑟
𝐹𝑜𝑟 𝑐𝑎𝑠𝑒 𝑎 , 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐹𝑜𝑟 𝑐𝑎𝑠𝑒 𝑏 , 𝑅 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡 𝑏𝑢𝑡 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑛𝑡 𝐹 = −3𝜋𝜂𝑅4
2ℎ3 𝑑ℎ 𝑑𝑡
𝐹 = −3𝜂𝑉2 2𝜋ℎ5
𝑑ℎ 𝑑𝑡
𝑅 > 10 ℎ (Thin plate sample)
(𝑆𝑡𝑒𝑓𝑎𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛)
(𝐹𝑟𝑜𝑚 𝐷𝑖𝑒𝑛𝑒𝑠 𝑎𝑛𝑑 𝐾𝑙𝑒𝑚𝑚)
Case (a).
excess of material is squeezed out
Case (b).
Squeezing sample of constant volume
Viscosity in compression : Parallel plate rheometer (10
5~10
9pa∙s)
ESPark Research Group 2016-03-21
𝜼 = 𝝈/𝟑 𝜺
Applied Stefan equation
Viscous flow of Super cooled liquid
NEXT STEP
By applying of Stephan equation
Calculation of viscosity
Case (b). Squeezing sample of constant volume
ESPark Research Group 2016-03-21
Strain rate
450 500 550
-0.10 -0.08 -0.06 -0.04 -0.02 0.00
Strain (%)
Temperature (K) Heating rate : 10K/min
TMA mode : expansion
Al84Ni10La6
Al84Ni10(LaCeNd)6 Al84Ni10(LaCeNdGdY)6
Tx Tx Tx Tg Tg Tg
Heating rate 10K/min Tg. TMA Tx. TMA Al84Ni10La6 546.5 557.9K Al84Ni10(LaCeNd)6 539.9 552.1K Al84Ni10(LaCeNdGdY)6 538.3 549.3K
Strain of Super cooled liquid
Heating rate : 0.167K/sec TMA mode : expansion
Al84Ni10La6 Al84Ni10LaCeNd6 Al84Ni10LaCeNdGdY6
510 520 530 540 550 560
1E9 1E10 1E11 1E12
Viscosity(Pa·s)
Temperature (K)
Increase of ΔT
x Decrease of viscosity
Good for TPF & precise fabrication
Viscous flow of Super cooled liquid
ESPark Research Group 2016-03-21
𝜂 = 𝜂0exp(𝐷∗ ∙ 𝑇0 𝑇 − 𝑇0)
Kinetic fragility
ESPark Research Group 2016-03-21
0.90 0.95 1.00
1E9 1E10 1E11 1E12
Viscosity (Pa·s)
Tg*/T
La LaCeNd LaCeNdGdY
Strong
Fragility Strain of Super cooled liquid
Fragility
: liquids are classified as strong glass & fragile glass (by D. angell)
good glass forming alloy : strong liquid with a high viscosity
Fragile glass
1. Softening effect
2. Multiple shear band
Effect of free volume on mechanical properties
Statistical analysis by complexity(SOC)
Plastic deformation of BMG
Shear bursting : Sum of free volume
Free volume
Interaction between matrix & Free volume & 2nd phase
Control the ductility of metallic glass
: multiple shear band or decrease the cut off size
ESPark Research Group 2016-03-21
<Serration by shear band deformation>
Self-organization
Self organization
자기조직화
무질서 복잡계속의 규칙성
Plan & Design Organization
Ex) parts + parts + parts + = machine 조직화 하고 난 뒤 조립
Interactions of local parts Organization Ex) Cells + Cells + Cells = Organics
만들어지고 나서 조직화
ESPark Research Group 2016-03-21
각각의 개발적은 크고 작은 사건
ex)earthquake, Comet impact, car crash, 서로간에 영향은 주지 않으나, 큰 흐름에서 보았을때, 사건발생의 규칙성이 있다.
complexity & SOC
Self-organized critical
𝑃 > 𝑆 = 𝐴𝑆
−𝛽exp(
−𝑆𝑆𝑐
)
Grain size effect the dislocation avalanche size
Beta : scaling exponent Sc: cut off of strain
Single crystal (β=1), >> grain with 1.92(β=0.35)
High beta value : close to self-organized state
Jamming state : statistically high level of interactions btw disl, matrix
Low beta value : relatively chaotic state Unjamming state : low level of interactions
ESPark Research Group 2016-03-21
Pop-in of nano-indentation
Evaluation SOC in metallic glass
𝑃 > 𝑆 = 𝐴𝑆
−𝛽exp
−𝑆𝑆𝑐 2
ESPark Research Group 2016-03-21
0.01 1E-3
0.01 0.1 1
Cumulative probability distribution, P(>S)
Strain burst size S
β : scale exponent
high β value = SOC state : Jamming state
low β value = Chaotic state : Unjamming state
𝜂 = 𝜂0exp(𝐷∗ ∙ 𝑇0 𝑇 − 𝑇0)
Kinetic fragility
ESPark Research Group 2016-03-21
0.90 0.95 1.00
1E9 1E10 1E11 1E12
Viscosity (Pa·s)
Tg*/T
La LaCeNd LaCeNdGdY
Strong
Fragility Strain of Super cooled liquid
Fragility
: liquids are classified as strong glass & fragile glass (by D. angell)
good glass forming alloy : strong liquid with a high viscosity
Fragile glass
1. Softening effect
2. Multiple shear band
0.01 10-2
10-1 100
Cumulative probability distribution, P(>S)
Strain burst size Sc
La LaCeNd LaCeNdGdY
𝑃(> 𝑆) = 𝐴𝑆−𝛽exp −𝑆𝑆
𝑐 2
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(scaling exponent)
La LaCeNd LaCeNdGdY
0.000 0.005 0.010 0.015 0.020 0.025
Cut off, Sc
Statistical analysis depending on fragility
Fragility ↑ Free volume↑
Chaotic deformation Multicomponent High entropy effect
Al84Ni10La6 Al84Ni10LaCeNdGdY6
ESPark Research Group 2016-03-21
Effect of free volume on
Phase separated Al-based metallic glass
Bending & fatigue test
ESPark Research Group
Al82.87Ni4.88Co1.95Y7.8Pb2.5 상분리 합금 SEM 이미지
Al-Pb 상분리 합금을 이용한 Ag paste
Al-Pb phase diagram
Al-Pb
이원계 시스템 전체 조성에서
miscibility gap보유
: Al-Pb고용체의 부재로 인한 상분리 현상
상분리 된
Pb-rich phase : SiNx건식 에칭 메커니즘 보유 예상
Al – Pb상분리 비정질 합금 개발
건식 에칭 가능
Al계 비정질 신합금
2015-03-02
Ref: APL, 93 (2008) 131907
ESPark Research Group
(Al84Ni10MM6)97Pb3DSC 열분석 결과 Al-Pb상분리 합금SEM 이미지
AlNiMM 비정질 시스템에Pb 소량 첨가를 통해Pb-rich phase 상분리 가능 확인
300 nm 수준의Pb-rich phase 다수 석출 : SiNx 건식 에칭 가능여부 확인 요구
Al – Pb
상분리 비정질 합금 개발
추후 설계 방향
: Pb절감 친환경
Ag paste 개발Pb rich Al-Pb상분리 합금 개발
Pb rich phase의 용융 통한SiNx 건식에칭 가능
PbO2 완전 대체 가능Al-Pb상분리 합금 개발
최종Pb분율 감소 통한 친환경Ag paste 개발 가능
2015-03-02
200 300 400 500
Heat Flow (W/g)
Temperature (℃)
Tm: 314.73℃
↑
↓Tx: 267.35℃
Heating rate : 40K/min As-quenched
Annealed
1㎛
Pb-rich phase
Al-Pb 상분리 합금을 이용한 Ag paste
Ω SUS 기판
Ag paste
압착
압착
Bending test
Ω SUS 기판
Ag paste
반복변형 반복변형
Fatigue test
(a) Oxide glass 적용
(b) 다성분계 Al계 MG Frit 적용 (c) Pb 상분리 Al계 MG Frit 적용
𝜀(%) =
(𝐷−𝑡)𝑡× 100
t : 시편 두께 / D : plate간 간격Bending / Fatigue test for flexible
Al – Pb
상분리 비정질 합금
: Flexible Ag paste로써의 가능성
ESPark Research Group 2015-03-02
ESPark Research Group 2015-03-02
3.0 2.5 2.0 1.5 1.0 0.5
0.010 0.015 0.020 0.06
Distance between plate (cm)
Resistance (Ω) / SUS bar with Ag paste
0.0 0.2 0.4 0.6 0.8 1.0
Strain (%)
(1)Oxide frit적용
(2)다성분계 Al계MG Frit 적용
(3) Pb상분리Al-계MG Frit 적용 Closed point : 전기저항
Opened point : strain
0.3Ω ↑
0 20000 40000 60000 80000
0.00 0.02 0.04 0.06 0.08
Electronic resistance (Ω)
Fatigue lifetime (Number of cycles) (1)Oxide frit적용
(2)다성분계 Al계MG Frit 적용 (3) Pb상분리Al-계MG Frit 적용
Bending / Fatigue test for flexible
Bending / fatigue
따른
Ag paste의 전기저항 변화
Oxide glass frit 적용
: brittle oxide로 인해 낮은 탄성한계 및 피로저항성
Pb 상분리Al계 비정질 합금
: Pb상의 낮은 융점으로 인해 젖음성 항샹 : 금속개재물에 의한 유연성 증가
상분리
Pb Al-based MG적용 통해
유연성 높은
Ag paste의 개발 가능Thanks for your kind attention