• Tidak ada hasil yang ditemukan

Disinfection

N/A
N/A
Protected

Academic year: 2024

Membagikan "Disinfection"

Copied!
25
0
0

Teks penuh

(1)

What is disinfection? Why to disinfect?

Disinfection is a process which inactivate or remove the

pathogenic microorganisms in system.

Disinfection

pathogenic microorganisms in system.

Treated (including disinfection) water should ensure the

microbiological safety.

Treatment should free from the secondary problem

(2)

USA Regulation

Required treatment level

C. parvum conc.

(Oocysts/100 L)

Required

inactivation/removal level

0.01 1 log (90 %)

0.1 2 log (99 %)

Microbial inactivation standard

0.1 2 log (99 %)

1 3 log (99.9 %)

10 4 log (99.99 %)

100 5 log (99.999 %)

1000 6 log (99.9999 %)

(3)

USA Regulation

Disinfection law

Microorganism

(level) Turbidity1) Characteristics SWTR

(1989)

Giardia (3 log)

Virus (4 log) < 0.5 NTU 최초의 개량적 소독 기준 도입

원수 및 처리법에 따른 제거율 설정 IESWTR Cryptosporidium Cryptosporidium에 대한 위험 대비.

New stricter disinfection regulation (USA) Microbial inactivation standard

IESWTR (1998)

Cryptosporidium

(2 log) < 0.3 NTU Cryptosporidium에 대한 위험 대비. 시설 용량 10,000명 이상

LT1ESWTR (2002)

Cryptosporidium

(3 log) < 0.2 NTU 시설 용량 10,000명 이하에도 적용 LT2ESWTR

(2003)

Cryptosporidium

(3 log) < 0.2 NTU 실증적인 실험 결과를 토대로

소독 기준을 반영 1) 4 시간 1회 측정, 월 측정 시료의 95 % 이상 만족

(4)

Korea Regulation

New stricter disinfection regulation (Korea)

(2001, Virus was detected in drinking water) 2002, Korean version of SWTR

99.9% Giardia removal Microbial inactivation standard

(2001, Virus was detected in drinking water)

(5)

Disinfectants

Chlorine

Chloramines Ozone

Chlorine Dioxide

HOCl, OCl

-

NH

2

Cl

O

3

ClO

2

Chlorine Dioxide

Permangnate Ozone/Peroxide

Ultraviolet

ClO

2

KMnO

4

O

3

+ H

2

O

2

UV 자외선

AOP

·

OH

(6)

Oxidant/Disinfectant Overview

Technology Chlorine Chloramines

Ozone

Oxidation Praimary Disinfection

Residaul Maintenance Fair

Unacceptable Good

Fair Poor/Fair

Good

Good/Fair Good Unacceptable Ozone

Chlorine Dioxide Permanganate Ozone/Peroxide

Ultraviolet

Good Poor

Fair Good

Poor

Good Poor Unknown

Good Fair

Unacceptable Unacceptable

Unacceptable

Unacceptable

Unacceptable

(7)

•OH 2.70

O

3

2.07

Oxidation Potentials (V vs NHE)

Oxidation Potentials of Common Chemical Oxidants Used in Water Treatment

H

2

O

2

1.78

HO

2

• 1.70

ClO

2

1.57

HOCl 1.49

Cl

2

1.36

(8)

Chemical disinfection : O

3

Ozone HPLC

Pump Off gas vent

Syringe Reaction Module

Three-way

Indigo Solution Magnetic

Bar

Schematics of disinfection treatment

Ozone generator

HPLCdetector (600nm)

Data Analysis

Sampling

Ozone analysis

: Indigo Colorimetric Method FIA :Flow injection analysis

Magnetic Stirrer

Saturate d

Ozone Injection

Three-way Valve

Saturated Ozone Chamber

Pump

Temp.

Control

Waste

Cho et al., 2001 (a); 2002 (a, c, d); 2003 (a - e), 2004 (e, g, h), 2005 (a)

(9)

Ozone Decay : Scheme

(10)

Ozone disinfection

CT values

95 ~ 180 0.4 ~ 0.8

0.03 ~ 0.05 E. coli 0.02

Ozone (pH 6~7)

Disinfectants

Free chlorine (pH 6~7)

Chlorine dioxide (pH 6~7)

Chloramine (pH 8~9)

7200 78

7200 5 ~ 10

Cryptosporidium parvum

2200 26

47 ~ 150 0.5 ~ 0.6

Giardia lamblia

3800 ~ 6500 0.2 ~ 2.1

0.01 ~ 0.05 0.006 ~ 0.06

Rotavirus

768 ~ 3740 0.2 ~ 6.7

1.1 ~ 2.5 0.1 ~ 0.2

Polio virus

CT values : disinfectant concentration (mg/l) × contact time (min)

(11)

Ozone disinfection

Inactivation kinetics Ozone

Ozone is a powerful oxidant able to achieve disinfection with less contact time and concentration than all weaker disinfectants, such as chlorine,

chlorine dioxide, and monochloramine

-0.5 0

0.5 mg/l

Cryptosporidium parvum

chlorine dioxide, and monochloramine

Limitation

Ozone can be used as a primary

disinfectant since it cannot maintain a residual in distribution system. Thus, ozone

Disinfection should be coupled with a secondary disinfectants.

Time (min)

0 2 4 6 8 10 12

-2.5 -2.0 -1.5 -1.0

Log (N/N 0)

1.0 mg/l

2.0 mg/l

(12)

Ozone disinfection

Inactivation modeling

Chick Model (1908)

N kT

Log N = −

0

Disinfectant : Phenol

Target : Anthracnose spore

Representative Models

N0

Chick-Watson Model (1908)

N kCT Log N = −

0

CT concept

Disinfectant : Ozone Target : E. coli

(13)

Ozone disinfection

Inactivation kinetics

(14)

Ozone disinfection

Decay of ozone

k’ : First order decay

IOD (instance ozone demand)

t

e

k

C

C =

0 '
(15)

Ozone disinfection

Inactivation modeling

Representative Models with ozone decay

Modified Chick-Watson Model

)]

' exp(

1 ' [

log C

0

nk t

n k

k N

N = −

n

− −

dt C N k

Log N = − ∫

t Integration

)]

' exp(

1 ' [

log

0

0

t nk n C

k

N = − − −

dt C N k

Log = − ∫

0

0

Delayed Chick-Watson Model









=

=

=

) 1log(

) (

) 1log(

1 )

log(

0 0 0

N N T k

C T C if T C T C k

N N T k

C T C if N

N

lag lag

lag

t Cdt C

where : = ∫

0t
(16)

Ozone disinfection

Minimum ESS (Error sum of squares)

Inactivation modeling Model determination

Minimum ESS (Error sum of squares)

∑ −

=

2

0 0

] )

log(

)

[log(

observed fitted

N

N N

ESS N

(17)

Ozone disinfection

Inactivation modeling

Model Fitness : Ozone disinfection

Observed results Chick-Watson Model

Initial ozone : 1.4 mg/l pH 8.2, Temp. 20°C

Modified Chick-Watson Model Modified Hom Model

Delayed Chick-Watson Model

(18)

Ozone disinfection

Inactivation modeling

Model Fitness : Ozone disinfection

Chick Watson Model

Modified Chick Watson Model Modified Hom Model

Delayed Chick Watson Model

Initial ozone : 1.4 mg/l pH 8.2, Temp. 20°C

(19)

Ozone disinfection

Inactivation modeling

Model Determination : Ozone disinfection

Water

Type pH ESS (Error sum of squares)

CWM MCWM MHM DCWM

Buffer Condition

5.6 3.56 2.74 2.58 2.36

7.1 4.49 3.90 2.24 2.11

Condition 7.1 4.49 3.90 2.24 2.11

8.2 9.92 4.87 7.17 3.48

Humic Acid

7.1 0.45 0.97 0.09 0.09

8.2 2.40 1.36 0.26 0.23

Han River

5.6 4.10 0.97 0.21 0.13

7.1 2.45 1.12 0.32 0.31

8.2 2.44 1.44 0.34 0.17

CWM: Chick-Watson Model MCWM: Modified Chick-Watson Model MHM: Modified Hom Model DCWM: Delayed Chick-Watson Model

(20)

IV. Investigating disinfection kinetics

Question?: Does the specific inactivation constant exist in the world of microorganism

inactivation ? (such as the specific rate

constants observed in chemical reactions)

disinfectant microorganism

+ biomolecular

reaction k, specific rate constant

A B

(21)

Pattern of ozone decay depending upon the level of treatment

0.6 0.8 1.0

]/ [O

3

]

0

Raw Water Coagulation /Sedimentation Treated Water

0.0 0.2 0.4 0.6

[O

3

]/ [O

Time (min)

0 2 4 6 8 10

Treated Water Sand-filtered Water

Distilled Water

(22)

The specific inactivation constant exists?

-3 -2 -1 0

L o g ( N /N

0

)

Raw water

Pre-chlorinated water

Coagulation /Sedimentation treated water

Ozone CT (mg/l.min)

0 2 4 6 8 10

-5

L o g ( N /N -4

-6

Sand-filtered water

GAC treated water

Buffered distilled water

The specific inactivation constant exists.

(23)

Slope

(mg/l.min)-1

Lag constant

(mg/l.min)

Data N

O

3 (62 ± 3) (1.8 ± 0.7) × 10-3

Cl

2 (32 ± 3) (1.5 ± 0.1) × 10-3

ClO

(35 ± 1) (7.8 ± 0.6) × 10-4

E. coli

Summary (1), The specific inactivation constant exists ?

ClO

2 (35 ± 1) (7.8 ± 0.6) × 10-4

B. subtilis spore

Slope

(mg/l.min)-1

Lag constant

(mg/l.min)

Data N

O

3 (0.6 ± 0.2) × 10-2 (0.50 ± 0.03) × 10-2

Cl

2 (1.6 ± 0.5) × 10-4 (35 ± 5)

ClO

2 (3.7 ± 0.1) × 10-2 (11.0 ± 0.6)
(24)

Slope (mg/l.min)

-1

Lag constant

(mg/l.min)

Data N

Cl

2

− (14.0 ± 0.4) (2.0 ± 1.7) × 10

-2

ClO

2

− (16.0 ± 0.3) (1.5 ± 0.1) × 10

-2

MS-2 phage

Summary (2)

Slope (mW/cm

2

)

-1

Lag constant

(mW/cm

2

)

Data N

E. coli − (0.32 ± 0.01) (4.10 ± 0.16)

B. subtilis spore − (0.14 ± 0.02) (6.20 ± 0.13)

MS-2 phage − (4.2 ± 0.01) × 10

-2

0

UV

(25)

Conclusions (Disinfection kinetics)

There are the specific constants of lag and slope in the world of microorganim

inactivation similar to chemical reaction

between two species (specific rate constant &

between two species (specific rate constant &

observed rate constant):

Why ?

Referensi

Dokumen terkait

I – Content quality evaluation Poor Fair Average Good Excellent Not applicable The introduction of the paper describes the problem.. within a

B - The Referee is to set his grade for each of the following categories by using Excellent –Very Good – Good – Fair – Poor 1- Estimate the author/authors competency: The

Interval Category Interval Score Description 80-100 Very Good 61-30 Good 41-60 Fair 21-40 Poor 0-20 Very Poor Arikunto, 2013 RESULTS AND DISCUSSION This research is

Degree of Satisfaction: [ Min = 1 , Max = 5 ] Excellent Very Good Good Fair Poor 5 4 3 2 1 Statement Points Easy access to sample panel تانيعلا ةنجل لىإ لوصولا

Table 4 Cronbach’s Alpha Internal Consistency α ≥ 0.9 Excellent 0.9 > α ≥ 0.8 Good 0.8 > α ≥ 0.7 Acceptable 0.7 > α ≥ 0.6 Questionable 0.6 > α ≥ 0.5 Poor 0.5 > α Unacceptable

Kriteria AUC Nilai AUC Interprestasi 0.90 – 1.00 Excellent Classification 0.80 – 0.90 Good Classification 0.70 – 0.80 Fair Classification 0.60 – 0.70 Poor Classsification 0.50 –

Quality Interpretation of Error Frequency Percentage Error Frequency Percentage % Interpretation 0 Exceptional 1-10 Excellent 11-25 very good 26-40 Good 41-55 Fair 56-80 Poor

In percentage form, 32.26% students who got excellent to very good score classification, 41.93% students who got good to average, 9.68% students who got fair to poor score