• Tidak ada hasil yang ditemukan

Introduction to Electromagnetism Static Magnetic Fields

N/A
N/A
Protected

Academic year: 2024

Membagikan "Introduction to Electromagnetism Static Magnetic Fields"

Copied!
11
0
0

Teks penuh

(1)

Introduction to Electromagnetism Static Magnetic Fields

(6-13)

Yoonchan Jeong

School of Electrical Engineering, Seoul National University Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953

Email: [email protected]

(2)

2

Magnetic Forces (1)

Hall effect:

← Hall field Magnetic force:

) N ( B u Fm = q ×

B0

az

B =

u a

J = yJ0 = Nq

B u

F = ×

net,steady q = 0

B u E = − ×

h → Hall effect

0 0B

xu

= a

0 0)

(−ayu ×azB

=

d B u dx E

Vh d h 0 0

0 =

=

Hall voltage

e q = −

Nq B

J

Ex / y z =1/

→ ← Hall coefficient

For an n-type semiconductor:

What if for a p-type semiconductor?

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

Vh will be reversed.

→ To determine N qEh

+

(3)

3

Magnetic Forces (2)

Magnetic force on the differential length element dl:

B u F = NqS dl × d m

Newton’s third law of action and reaction

) N ( B l F = ×

d m Id

) N

× (

=

Fm I Cdl B

For two circuits carrying current I1 and I2:

×

=

1

21 1

1

21 I C dl B

F =

2 ×2 21

21 2 2

0

21 4 C

R

R I dl a

B

π

µ

) N ) (

(

4 1 2

21

2 21

2 1

2 1

0

∫ ∫

× ×

= C C

R

R d I d

I l l a

π µ

×

=

2

12 2

2

12 I C dl B

F

) N ) (

(

4 2 1

12

2 12

1 2

1 2

0

∫ ∫

× ×

= C C

R

R d I d

I l l a

π µ

12

21 F

F =?

→ Ampère’s law of force

dl along the direction of I

“Biot-Savart law”

(4)

4

Magnetic Forces (3)

) N ) (

(

4 1 2

21

2 21

2 1

2 1 0

21 =

∫ ∫

C C × ×

R

R d I d

I l l a

F

π

µ

For two circuits carrying current I1 and I2:

2 21

2

1 ( )

21

R d

dl × l ×aR

2

21 2 1

2 21 1

2( ) ( )

21 21

R d d

R d

dl l aR aR ll

⋅ −

=

∫ ∫

1 2

21

2 21 1

2( )

C C

R

R d dl l a

∫ ∫

=

2 1

21

2 21 1 2

) (

C C

R

R d dl a

l

1 ] [

2 1

21 1

1

2

−∇  

= C dl C dl R = 0

∫ ∫

=

1 2

12

2 12

2 1

2 1 0 12

) (

4 C C

R

R d I d

I a l l

F

π

µ

F21

= Newton’s third law

of action and reaction verified!

0 ) (∇ =

×

V

Recall:

Recall: “back-cab” rule

∫ ∫

=

1 2

21

2 21

2 1

2 1 0 21

) (

4 C C

R

R d I d

I a l l

F

π

µ

) N ) (

(

4 2 1

12

2 12

1 2

1 2 0

12 =

∫ ∫

C C × ×

R

R d I d

I l l a

F

π

µ

(5)

5

Example 6-21

For two parallel current-carrying wires:

) ( 12

2 12

2

12 F a B

F = ′ = I z × l

d I

x π

µ 2

1 0

12 a

B = −

→ ← Ampère’s circuital law

) N/m 2 (

2 1 0

12 d

I I

y π

a µ F′ = −

→ Attraction for currents in the same direction

→ Repulsion for currents in opposite directions

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

(6)

6

Magnetic Forces and Torques

Magnetic flux density:

Forces on the loop:

B//

B B = +

ar

FB

→ Radial symmetry )

// (

,

1 upward

dF B ∝ −az

)

// (

,

2 downward

dF B ∝ +az

Rotational motion

→ Torque Torque on the loop:

φ

sin )

(

2 dF b dT = ax

φ φ

) sin sin

(

2 IdlB// b ax

=

φ φ

d B

x Ib

2 //

2 sin

2

= a

φ

π

φ

d B

Ib

d x

=

=

0

2 //

2 sin

2 a T

T = axI(

π

b2)B//

) m N ( ⋅

×

= m B

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

) (B = azB

→ No net contribution

(7)

7

Forces and Torques - Stored Magnetic Energy (1)

System of circuits with constant flux linkage:

Work done by the source

m

s dW dW

dW = + Mechanical work

done by the system Increase in the stored magnetic energy

Principle of virtual displacement:

Virtual displacement dl with no changes in flux linkages

→ No emf → No energy from to the source to the system

m

s dW dW

dW = +

l F d dW = Φ

) N

m (

−∇W

=

FΦ Magnetic forces:

Magnetic torques:

) m N ( )

( ⋅

− ∂

=

Φ

φm

z

T W

(

Wm

)

dl

m =

dW

=

= 0

(8)

8

Forces and Torques - Stored Magnetic Energy (2)

System of circuits with constant currents:

Virtual displacement dl with constant currents

dt V I

dW k

k k s =

→ Emf induced → Energy from the source to the system

) N

m (

I = ∇W

F Magnetic forces:

Magnetic torques:

) m N ( )

( ⋅

= ∂

I z φm T W

l F d dW = I

=

( )

Wm dl

m

s dW dW

dW = +

k k

k

m I d

dW = Φ

21

dWm

=

→ Flux linkage changed

dWm

dW =

k

k

kd I Φ

=

(9)

9

Force and Torque in Terms of Mutual Inductance

For two circuits with currents I1 and I2:

2 2 2 2

1 12 2

1

1 2

1 2

1 L I L I I L I

Wm = + +

∑∑

= =

= N

j N

k

k j jkI I L

1 1

2 1

) ( 12

2

1I L

I = I

F

Magnetic force between two circuits:

Magnetic torque between two circuits:

) m N ( )

( 1 2 12

= ∂

→ φ

I L I TI z

=

Φ

= N

k

k k

m I

W

2 1

1

(10)

10

Example 6-23

System of circuits with constant currents:

System of circuits with constant flux linkage:

gap air m

m d W

dW = ( )



 

=  B Sdy

0 2

2 2

µ y Wm

y

− ∂

=

FΦ a

0 2

µ S B ay

=

g

c R

R Vm

+ 2

= Φ

Φ

=

k

k k

m I

W 2

1 = INΦ

2 1

y Wm

y

I

= ∂

F a 

 

−Φ

= y 0S

2 2

2 1

a µ (N)

0 2

y µ S

− Φ

= a

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

Magnetic flux

S y

NI

c + 2 / µ0

= R

Magnetic flux Magnetic flux linkgage

) N (

0 2

y µ S

− Φ

= a

(11)

11

Example 6-24

Force between two coaxial circular coils:

µ θ

φ sin

4 2

2 0

R a Ib A =

Recall:

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

µ θ

φ sin

4 2

2 1 1 1 0

12 R

b I a N

A =

=

R b R

b I

N 2

2 2 1 1 1 0

4 µ

aφ 2 3/2

2 2

2 2 1 1 1 0

) (

4 z b b b I N

= µ + aφ

= Φ

2

2 12

12 C

L A dl µ φ

d b b

z

b b I N

C

= +

2

2 2 / 3 2 2 2

2 2 1 1 1 0

) (

4

2 / 3 2 2 2

2 2 2 1 1 2 1 0

) (

2 z b

b b I N N

= µ +π

1 12

12 I

L

ΦL

=

2 3/2

2 2

2 2 2 1 2 1 0

) (

2 z b b b N N

= µ + π

d z

z dz

I dL I

=

=

F12 a 1 2 12 2 5/2

2 2

2 2 2 1 2 1 0 2

1 2( )

3

b d

d b b N I N

zI +

= µ π

a ) N 2 (

3

4 2 1 0

d m m

z π

a µ

m1 = N1I1πb12, m2 = N2I2πb22

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

(6-43)

Referensi

Dokumen terkait