• Tidak ada hasil yang ditemukan

Lecture 11-2 Frequency Domain Analysis II

N/A
N/A
Protected

Academic year: 2024

Membagikan "Lecture 11-2 Frequency Domain Analysis II"

Copied!
23
0
0

Teks penuh

(1)

Lecture 11-2

Frequency Domain Analysis II

(2)

Control System Design in Frequency Response

1. large fast time response

2. : function of damping ratio large large

3. good damping characteristics

4. minimum effect of any undesirable noise

m

,

p

M M 

M

m

 M

p

m

1  M

m

 1.4

1.4 1.0

m

( ) M

(3)

Experimental Determination of Transfer Function

( )

r t Unknown y t ( )

System

 

( ) sin

i

; ( ) (

i

) sin

i

r t   t y t  M    t 

some frequency measure steady state

i

M  

i

  

 

M

 

 

( ) ( )

G s G j

M G j

 

(4)

Transfer Functions and Frequency Magnitude Plot

Bode Plot (Logarithmic Plots) i) Log Magnitude

ii) dB : decibel, Logarithm of the magnitude iii) 1 decade : frequency width

Drawing the Bode Plots

The reason of using logarithm - mathematical operation

- typical three types : simple straight line asymtotic

approximations

( ) 20 log ( ) L G j

m

  G j  dB

1 ~ 10 2.5 ~ 25

Hz Hz

Hz Hz

, ,

    

(5)

  

   

     

       

1 2

2 2

3

1 2

2 3

1 1

( ) 1 1

1 1

2 1 1

) 20 log

1 1

) 20 log 20 log

m m m m

m m m

m

m

K sT sT

G s s sT as bs

L G j L K L j T L j T

L j L j T L aj b j

i L K K dB

ii L j j

  

   

  

 

   

    

     

 

 

  

 

 

Transfer Functions and Frequency Magnitude Plot

0.1 1 10

straight line

straight line

With negative slope -20dB/decade

log

log ( )

M

( ) M

ex)

(6)

 

 

 

 

 

 

 

2 2

1 2 2

1

1

) 1

1 20 log 1 20 log 1

1 1 20 log1 0

1 1 20 log

20 log 20 log ) 1

1

1 20 log 1 20 log 1

1 1 20 log1 0

1 1 20 log

20 log

m

m m

m

m

m

iii j T

L j T j T T

T L j T dB

T L j T T

T iv j T

L j T j T T

T L j T dB

T L j T T

  

 

  

  

 

  

    

    

   

 

      

     

    

   20 log T

log ( )

M

( ) M

1/T

1/T

Transfer Functions and Frequency Magnitude Plot

20dB decade/

20dB decade/

log

(7)

 

   

 

 

2 2

2 2

2 1/ 2 2

2

2 2

2 2

2 2

1 1

)

2 1 2 1

1 1

1 1 2

20 log 20 log 1

2 1 2 1

1 1

1

( ) 20 log1 0 1

( ) 20 log 4

n n n n

m

n n

n n n n

n

m

n

m

n

v

s s j j

L

j j j j

L G j dB

L G j

   

   

 

 

     

   

 

    

   

   

   

     

 

        

               

   

   



   



     0 log

n

Transfer Functions and Frequency Magnitude Plot

( ) M

log

(8)

( )

M

1

( ) M ( )

M

1

1 20 logK

1 20 logK

20dB decade/

20dB decade/

 

1 1

1 1 1

K K

j  j  s s

 

    

 

   

   

Transfer Functions and Frequency Magnitude Plot

20dB decade/

40dB decade/

ex)

(9)

Vibration Isolation in Rotating Systems

Vibration due to rotating unbalance

2sin mr t

2

2

(1) ( )

sin

( ) 1

( ) ( )

M x bx k x p t

mr t

X s G s

P s Ms bs k

 

  

 

 

 

(10)

 

   

   

2

2

1 1

2 2 2

2 2 2 2

2 2

2 2

(2)

( ) 1

( ) ( )

( ) sin( ) sin( )

2 /

tan tan

1 /

1

1/

1 / 2 /

n n

n n

x j G j

p j M bj k

x t X t G j t mr

b k M G j

k M b

k

 

  

     

 

 

  

  

   

 

  

    

   

 

 

 

Frequency response

Vibration Isolation in Rotating Systems

small

n

range

1 k ( ) M

(11)

Vibration Isolation in Rotating Systems

Vibration isolators

system isolator

system isolator

Machine Suspensions

Reduce the magnitude of force transmitted from a machine to its foundation

Reduce the magnitude of motion transmitted from a vibratory foundation to a system

Isolator i) - load supporting elements, spring.

- energy-dissipating elements, damper.

ii) - Synthetic rubber : both load supporting and energy dissipating

Force Force

Motion

Motion

(12)

Transmissibility :

A measure of the reduction of transmitted force or motion afforded by an isolator.

( )

( )

the force amplitude transmitted to the foundation TR machine

the amplitude of the exciting force the vibration amplitude of the system TR suspensions

the vibration amplitude of the foundation

Transmissibility

(13)

Transmissibility for Force Excitation

 

   

 

2

0

2

2

2 2

( ) sin sin

( ) sin

( ) 1 ( )

( ) ( ) ( ) ( )

/ /

( )

( ) / /

t

t

t

p t mr t F t

f t bx k x F t

X s P s

Ms bs k

F s bs k X s bs k P s Ms bs k

b M j k M

F j bj k

p j M bj k b M j k M

  

 

  

    

 

   

  

    

 

 

 

     

Frequency response

(14)

Transmissibility for Force Excitation

 

 

 

   

 

   

2

2 2

0

2

2 2

2 2

2

2 2

2

1 2 /

( )

/ , / 2

( ) 1 / 2 /

( ) ( )

1 2 /

1 / 2 /

1 2

1 2

, 2 , 1

t n

n n

n n

t t

n

n n

F j j

k M b M

p j j

F F j TR F p j

Note TR

for any

  

 

    

 

   



 

    

 

 

 

 

 

 

 

n

2

small

1 TR

small

(15)

spring&damper

Simplified model

sin p P t ( )

x t

 

 

   

2 2

2 2 2

2 2 2 2

2

2 2

2

( ) ( ) 0

( ) ( )

( ) , ( )

( ) ( )

1 2

1 2

mx b x p k x p

X s bs k x j bj k

P s ms bs k p j m bj k

x j b k

TR p j k m b

 

  

 

  



 

    

 

 

    

  

 

 

 

 

Automobile Suspension Systems

(16)

If b is small and

Then resonance - excessive vibration

- extremely large force transmitted

 

 

2

2 2 2 2

2 2 2 2

P mr

mr b k

TR

k m b

 

 

 

 

x m

  

n

 

X j

1

/

k m

is very close to , critical speed,

=> A dynamic vibration absorber

 

n

Dynamic Vibration Absorbers

(17)

x y

( ) sin p tP

t ma

M

 

 

 

 

  

2

2

2

2 2 2

( )

( ) ( ) ( )

( ) ( ) 0

( ) ( )

a

a a

a a

a a a

a a

a a a a

M x kx bx k x y p t m y k y x

Ms bs k k X s k Y s P s m s k Y s k X s

m s k X s

P s Ms bs k k m s k k

     

  

    

  

  

    

 



k

a

Laplace Transform

Frequency response

  

2

2 2 2

( ) ( )

( )

a a

a a a a

m k

X j for small b

P j M k k m k k

f t kx bx kx

  

 

      

   

Dynamic Vibration Absorbers

The transmitted force

(18)

Dynamic Vibration Absorbers

  

 

  

2

2 2 2

2 2

2 2 2

2

( ) ( )

, 0

( ) 0, ( ) 0

a a

a a a a

a a

a a a a

a a

a a

k m

X j P j

M k k k m k

mr k m

M k k k m k

k m

k m

X j f t

  

 

 

 

 

    

 

    

 

 

If we choose so that,

then, at this frequency.

If

we use dynamic vibration absorbers.

exc n

  

n2

1

 

X j

(19)

Physically, f ta( ) p t( ) Psin

t

   

( ) ( ), , 0

( )

a a a exc n

a

f t k x y k y p t at x

k y p t

 

      

Spring force cancels .

2



2

2

2

( ) ( )

, 0

a

a a a a

a a a a

k Y j

P j M k k m k k

m k k m

  

      

 

If we choose so that,

then magnitude ratio

( ) 1

( )

a

Y j

P j k

  

1 k

a

   

( ) sin

( ) 1 sin 180 sin 180

a a

p t t

y t P t P t phase

k k

 

 

  

Dynamic Vibration Absorbers

M

(20)

Seismograph

x

y

z   x y

A device used to measure ground displacement during earthquakes

   

  0

mx k y x b y x z x y

m y z bz kz mz bz kz my

   

 

    

   

  

  



 

Equation of motion : measurement :

2 2

2 2 2

2

: ( )

( ) 2

, 2

n n

n n

Z s ms s

Transfer Function

Y s ms bs k s s

k b

m m

 

 

 

  

   

   

 

 

(21)

 

2 2

2 2 2

( )

( ) 2 1 2

( ) ( ) ( )

1, 1

( )

n

n n

Z j

Y j j j

z t y t Z j Y j

     

      

 

   

    

  

We hope, If,

Z Y 1

n

( ) ( )

n

n

n

z t y t for

k m

 

 

 

  

 

 

Choose as small as possible.

(large mass, soft spring)

Seismograph

(22)

Accelerometer

z   x y

The system configuration is basically the same as the seismograph, but

choice of undamped natural frequency is different.

mz bz     kz   my 

Equation of motion : the same as the seismograph,

2 2 2 2

2

( ) 1

: ( ) 2

( ) 1

( )

n n

n

n

Z s m

Transfer Function

s Y s ms bs k s s

Z s s Y s

 

 

 

  

   



 

Accelerometer

 y

n 2

1

n

operatingrange Frequency response

(23)

End of Lecture 11-2

Referensi

Dokumen terkait