• Tidak ada hasil yang ditemukan

Lecture 11-1 Frequency Domain Analysis I

N/A
N/A
Protected

Academic year: 2024

Membagikan "Lecture 11-1 Frequency Domain Analysis I"

Copied!
13
0
0

Teks penuh

(1)

Lecture 11-1

Frequency Domain Analysis I

(2)

Physical System Mathematical Model

Solution, Time domain Transfer Function

S-domain Solution

Feedback Control System

Laplace Transform

Stability of the control system

Inverse Laplace Transform

Modeling

input output relation differential equation

 

Direct method Solution by state equation

formulation

(3)

G(s)

( ) y t ( )

u t

    

    

1 2

1 2

1 2

2 2

2 2

1 2

1 2

1 2

( ) sin ( )

( ) ( ) ( ) , ( )

( ) ( )

( )

n

n n

n n

s t

s t s t

j t j t

n

u t P t

K s z s z s z

G s s s s s s s

Y s G s u s u s P

s Y s G s P

s

b b b

a a

s j s j s s s s s s

y t ae

ae

b e b e b e

 

 

  

   

   

 

     

    

     

Concept of Frequency Response

(4)

   

   

 

   

     

   

   

   

2 2

2 2

( )

( ) 2

( ) 2

cos sin

cos sin

2 2

2 2

j t j t

s j

s j

x y

j

j

j

j

y t ae ae

P P

a G s s j G j

s j

P P

a G s s j G j

s j

G j G jG

G j j G j

G j j G j e

G j G j e

P P

a G j G j e

j j

P P

a G j G j e

j j

 

  

  

   

   

 

 

 



 

     

   

 

 

  

  

     

 

Similarly,

Frequency Response

 

G j 

 

G  j 

 j 

G

x

G

y

(5)

Frequency Response

   

       

   

( )

2 2

2 sin

j t j t

j j t j j t

j t j t

y t ae ae

P P

G j e e G j e e

j j

G j P e e

j

G j P t

 

   

   

 

  

 

  

  

  

 

 

(6)

 

2 2

1

1 2 2

( ) 1

( ) ( ) 1

( ) 1

1 ( ) | ( ) | 1

1

( ) ( ) ( 1)

tan

( ) 1 sin tan

1

Y s G s

R s Ts

G j Tj

M j G j

T

j G j Tj

T

y t t T

T

 

 

   

 

 

 

 

    

 

 

Consider,

G(s)

( ) y t ( )

r t sin t

sinusoidal input

 steady state

Frequency Response of First Order Systems

( )

M 

(7)

G(s)

( ) y t ( )

r t sin t

sinusoidal input

 A sin( t )

sinusoidal output

  

2

2 2

2 2

2

2 2 2 2 2 2 2 2

( ) , 0 1

2

( ) , ( ) sin

( ) 2 2

( ) cos sin cos sin

sin( ) sin( )

n n

n

n

n n

n

n n n n

t t

d d d d

d t

d

G s s s

R s r t t

s

as b cs d

Y s s s s s s s

y t ae t b e t c t d t

Ae t B t

 



 

 

 

  

     

   

   

 

  

 

 

 

  

     

   

   

Frequency Response of Second Order Systems

transient

response Steady-state

response

(8)

( ) ( ) sin( )

( ) ( ) ( )

( )

( ) ( )

y t A j t

M y t G j

r t

j G j

  

 

  

 

 

 

Magnitude ratio

Phase

( ) M 

( j )

  

 1.0

Frequency response

Steady State Frequency Response

(9)

Steady State Frequency Response

 

   

 

2

2 2

2 2

2 2 2 2

2

2 2

2 2 2 2 2 2

2

2 2

2 2 2 2 2 2 2

2

2 2

( ) ( )

( ) 2

( )

( )

( ) 2 2

( )

( ) 2

( ) 4

1

4 1 4

( )

( ) ( )

( )

n

n n

n n

n n

n n

n

n n

n n

n

n n

n n

Y s G s

R s s s

Y j G j

R j j j j

M Y j j

R j

Y j M j G j

R j

 

 

 

        

 

    

     

       

 

  

 

 

  

 

 

    

 

 

 

      

 

 

(10)

( ) M 

( j )

  

 1.0

m

 90

 180

1

2 2

1

( ) tan 2

lim ( ) tan 0 180

n n

j

j

   

 

 



  

   

2 2

 

n

2  

n

 

j 

Steady State Frequency Response

M

m
(11)

Steady State Frequency Response

2

2 2 2

2

2 2

2

2

2 2 2

2

2 2

2 2

2

2 2

2 2

2 2

2 2 2 2

2

2

( ) 1

1 4

2 1 2 8

( ) 0

1 4

2 1 2 8 0 , 1 2 0

1 2 , 1

2 1

n n

n n n

n n

n n n n

n m m

M

dM d

M

   

 

   

  

   

 

     

   

   

 

  

  

 

 

    

         

  

 

 

   

      

   

 

    

              

    

    

(12)

Unit Step Response VS Frequency Response

( ) y t ( )

r t

2

2 2

2

n

n n

s s

 

 

 

1

2 1

2

( ) ( )

( ) 1 1 sin 1 cos

1

nt

n

r t u t

y t e



  t 

 

   

( ) M j 

 1.0

m

M

m

( ) y t

t Mp

1 exp

2 p

1

M 

 

 

       

2

2

1 2 , 1

2 1

m n

M

m

  

 

  

Unit step response Frequency response

(13)

End of Lecture 11-1

Referensi

Dokumen terkait

Frequency response of 70 kV and 150 kV busbar in case study 1 during LWBP 3.3 Simulation Results of Timor System Frequency Stability in Case Study 2 In case study 2, a generator