• Tidak ada hasil yang ditemukan

Frequency Domain Analysis I

N/A
N/A
Protected

Academic year: 2024

Membagikan "Frequency Domain Analysis I"

Copied!
12
0
0

Teks penuh

(1)

Frequency Domain Analysis I

(2)

Physical System Mathematical Model

Solution, Time domain Transfer Function

S-domain Solution

Feedback Control System

Laplace Transform

Stability of the control system

Inverse Laplace Transform

Modeling

input output relation differential equation

Direct method Solution by state equation

formulation

(3)

G(s)

( ) y t ( )

u t

  

  

1 2

1 2

1 2

2 2

2 2

1 2

1 2

1 2

( ) sin ( )

( ) ( ) ( ) , ( )

( ) ( )

( ) n

n n

n n

s t

s t s t

j t j t

n

u t P t

K s z s z s z

G s s s s s s s

Y s G s u s u s P

s Y s G s P

s

b b b

a a

s j s j s s s s s s

y t ae ae b e b e b e

 

Concept of Frequency Response

(4)

 

 

   

    

 

   

2 2

2 2

( )

( ) 2

( ) 2

cos sin

cos sin

2 2

2 2

j t j t

s j

s j

x y

j

j

j

j

y t ae ae

P P

a G s s j G j

s j

P P

a G s s j G j

s j

G j G jG

G j j G j

G j j G j e

G j G j e

P P

a G j G j e

j j

P P

a G j G j e

j j



 

   

Similarly,

Frequency Response

 

G j

G j

j

Gx

Gy

(5)

Frequency Response

   

 

 

( )

2 2

2 sin

j t j t

j j t j j t

j t j t

y t ae ae

P P

G j e e G j e e

j j

G j P e e

j

G j P t

   

 

(6)

 

2 2

1

1 2 2

( ) 1

( ) ( ) 1

( ) 1

1 ( ) | ( ) | 1

1

( ) ( ) ( 1)

tan

( ) 1 sin tan

1

Y s G s

R s Ts

G j Tj

M j G j

T

j G j Tj

T

y t t T

T

 

   

 

Consider,

G(s)

( ) y t ( )

r t sin t

sinusoidal input

steady state

Frequency Response of First Order Systems

( ) M

(7)

G(s)

( ) y t ( )

r t sin t

sinusoidal input

Asin( t )

sinusoidal output

 

2

2 2

2 2

2

2 2 2 2 2 2 2 2

( ) , 0 1

2

( ) , ( ) sin

( ) 2 2

( ) cos sin cos sin

sin( ) sin( )

n n

n

n

n n

n

n n n n

t t

d d d d

d t

d

G s s s

R s r t t

s

as b cs d

Y s s s s s s s

y t ae t b e t c t d t

Ae t B t

 





 

 

 

Frequency Response of Second Order Systems

transient

response Steady-state response

(8)

( ) ( ) sin( )

( ) ( ) ( )

( )

( ) ( )

y t A j t

M y t G j

r t

j G j

 

 

 

Magnitude ratio

Phase

( ) M

(j )

 

1.0

Frequency response

Steady State Frequency Response

(9)

Steady State Frequency Response

 

   

 

2

2 2

2 2

2 2 2 2

2

2 2

2 2 2 2 2 2

2

2 2

2 2 2 2 2 2 2

2

2 2

( ) ( )

( ) 2

( )

( )

( ) 2 2

( )

( ) 2

( ) 4

1

4 1 4

( )

( ) ( )

( )

n

n n

n n

n n

n n

n

n n

n n

n

n n

n n

Y s G s

R s s s

Y j G j

R j j j j

M Y j j

R j

Y j M j G j

R j



   

 

  

  

(10)

( ) M

(j )

 

1.0

m

90

180

1

2 2

1

( ) tan 2

lim ( ) tan 0 180

n n

j

j

   

 



 

   

2 2

 n

2 n

j

Steady State Frequency Response

Mm

(11)

Steady State Frequency Response

2

2 2 2

2

2 2

2

2

2 2 2

2

2 2

2 2

2

2 2

2 2

2 2

2 2 2 2

2

2

( ) 1

1 4

2 1 2 8

( ) 0

1 4

2 1 2 8 0 , 1 2 0

1 2 , 1

2 1

n n

n n n

n n

n n n n

n m m

M

dM d

M

 









  



 

(12)

Unit Step Response VS Frequency Response

( ) y t ( )

r t 2

2 2

2

n

n n

s s



 

1

2 1

2

( ) ( )

( ) 1 1 sin 1 cos

1

nt

n

r t u t

y t e  t

 

( ) M j

1.0

m

Mm

( ) y t

t Mp

1 exp 2 p 1

M 

 

2

2

1 2 , 1

2 1

m n Mm

Unit step response Frequency response

Referensi

Dokumen terkait

The online LC monitoring system shows the performance of LC in time domain, FFT, spectrogram, root mean square (RMS) value, fundamental value, total harmonic distortion (THD),

Muh Budi R Widodo, Muhammad abidillah, Imam Robandi,” optimal design load frequency Control on multi area power system using interval type-2 Fuzzy PI Controller. Muhammad

For a chosen DC motor speed control regulation transfer function, the Ziegler-Nichols (ZN) tuning methods has been shown to give a faster system response with higher

• An information system is a conceptual system that enables managers to control and monitor a firm’s physical systems used to transform input resources into output

Kerangka kerja yang digunakan sebagai acuan adalah framework CobIT 4.1 pada Control Objective ke-5 dari Domain Delivery and Support (DS), Ensuring System Security

Various topologies and many control methods have been proposed for PSS design with good performance and used in power system stability control and successfully improve system damping,

The differential equation system 10 is used to determine fixed points, basic reproductive numbers, and fixed-point stability analysis of the SEIRS type Covid19 spread mathematical

COURSE PLAN : Week 1: Automatic Control System Week 2: Mathematical Modelling Week 3: Transient Response Analysis Week 4: Stability and Steady State Error Week 5: Root Locus