System Analysis Spring 2015
1
10-3
Linear Systems Analysis in the Time Domain III
- Transient Response -
System Analysis Spring 2015
2
System Response with Additional Poles
2 2
( )
( ) ( )
n d
n d
B s C
C s A
s s
2
1
,
2 n n1
p p j
Underdamped System with additional pole at - α
( ) 1
2cos( )
1
nt
step d
y t e t
System Analysis Spring 2015
3 3
▪ 목적
:
제어시스템을 설계할 때 극점이 과도응답에 미치는 영향을 알아본다.
▪ 표준
2
차 계단응답에 대한 부가 극점의 효과를 고려■ 극점 추가의 영향
2
( ) 1 , 0.5
( / 1)[ 2 1]
H s s s s
System Analysis Spring 2015
4 4
■ 극점 추가의 영향
▪
Simulation Result2
( ) 1 , 0.5
( / 1)[ 2 1]
H s s s s
System Analysis Spring 2015
5 5
■ 영점 추가의 영향 (2)
2
0 2 2
/ 1
( ) , 0.5, 1, 1
2 1
1 1
( ) ( ) ( )
2 1 2 1
d
H s s
s s
H s H s H s s
s s s s
System Analysis Spring 2015
6 6
■ 영점 추가의 영향 (2)
0.5, 1
0.5, 1
▪
Simulation Result2 0 2 2
/ 1 1 1
( ) , ( ) , ( )
2 1 2 1
d2 1
s s
H s H s H s
s s s s s s
System Analysis Spring 2015
7 7
■ 영점 추가의 영향 (1)
2
/ 1
( ) , 0.5
2 1
H s s
s s
▪Simulation Result
System Analysis Spring 2015
8
Non-minimum Phase System
System Analysis Spring 2015
9
System Analysis Spring 2015
10
System Response with Zeros
System Analysis Spring 2015
11
Effects of Nonlinearities
Saturation Deadzone
System Analysis Spring 2015
12
Effects of Nonlinearities
Backlash
System Analysis Spring 2015
13
1
,
2, ,
nx x x
system
1 2
m
u u u
1 2
l
y y y
1 2
( ) ( ) ( )
( ) ( ) ( )
( )
n Tx t Ax t Bu t y t Cx t Du t
x t x x x
Solution of Linear (Time Invariant) State Equation
System Analysis Spring 2015
14
Basic Matrix Linear Algebra -Homogeneous Solution
( 0)
0 0 0
2
A A
0 0
A
(0) ( ) (0)
( ) 0 i)
( ) 0,
( ) ( ), , ( )
( ) ( )
ii) exp( ) 1
1! 2! !
i) x = A x A : , x : 1
x( ) exp A( ) x( ), ( ) A
ii)
at
at
a t t
k at
t t
t
x C
x t x e
u t x ax
x t Ce t
x t e x t t t x t
at at at
e at
k
n n n
t t t t d e e
dt How to evaluate e
Scalar Function
Homogeneous Solution
System Analysis Spring 2015
15
0
0
A( ) 0
0 0
( )
0 0
2 1 1 0 2 0 0 1 2
2 A 2 A 2
1
x( ) x( )
( ) x( )
( ) exp A( )
1. ( ) ( ) ( ) , ,
2. (0)
3. ( ) ( ) ( ) (2 ) (2 )
( ) ( )
4. ( ) ( )
5. ( )
t t
A t t
t t
g
t e t
t t t
t t e t t
t t t t t t for any t t t
I
t t t t e e t
t gt
t t
t
: State transition matrix (STM)
: fundamental matrix of the system Properties of STM
is nonsingular for all finite values of t (inverse exists)
State Transition Matrix
System Analysis Spring 2015
16
0
( ) 0
0
x A x B , x A x B ,
x A x B , x B ( )
x( ) x(0) B ( )
x( ) x(0) B ( )
( ) x(0) ( ) B ( )
At
At At At At At
t
At A
t
At A t
t
u u
integrating factor e
e e e u d e e u t
dt
e t e u d
t e e u d
t t u d
Complete Solution of the State Equation
System Analysis Spring 2015
17
00
0
0 0
0 0
0
, , x( ) x( ) B ( )
x( ) ( ) x( ) ( ) B ( )
x( ) ( ) x(0) ( ) B ( )
t
At At A
t t
t t
for t t e t e t e u d
t t t t t u d
t t t u d
- Zero-input response
- free response
- Zero-state response
- forced response
0
, , 0
0
x( ) ( ) x(0) ( ) B ( )
t
change of variable let t t
t
d d
t t u d
Complete Solution of the State Equation
System Analysis Spring 2015
18
Laplace Transformation Solution of State Equations
x Ax Bu y Cx Du
0
1 1
0
X( ) A X( ) B ( ) ,
X( ) ( I A)
( I A) B ( )
s s x s U s
s s x s U s
( I A)
X( ) [ (0) B ( )]
det( I A)
adj s
s x U s
s
( ) X( ) ( ) Y s C s DU s
( ) X( )
( ) ( )
Y s s
C D
U s U s
( ) ( I A)
( ) det( I A) B
Y s adj s
C D
U s s
( I A) det( I A) det( I A)
C adj s B D s
s
Laplace transformation
Transfer function form
System Poles Roots of the denominator / Solution of det( I A) s 0
Eigenvalues of A matrix!!
System Analysis Spring 2015
19
Time Domain Solution of State Eqns. using Laplace Transform
x A x B u
1 1
0
A -1 1 -1
X( ) ( I A) ( I A) B ( )
( I A)
( I A) ( )
det( I A)
t
s s x s u s
adj s
e s t
L L s
A A( )
0 0
0
( ) B ( )
( ) (0) ( ) B ( )
t
t t
t
x t e x e u d
t x t u d
System Analysis Spring 2015
20
2 1-1 1 -1 2 3
2 3 4
2 2 3 3
A 2 2 3 3
1 1 1
, , ( ) ( 1) ( )
( 1)!
1 1 1 1
( I A) I A A A
1 1
I A A A
2! 3!
1 1
I A A A
2! 3!
n
n n n
n n
t
t t t f t d F s
s n s ds
s s s s s
t t t
e t t t
L L L
L L
Using Laplace transformation table
System Analysis Spring 2015
21 Example1. Find the state transition matrix and solve for x(t).
0 1 0
x( ) x( ) ( )
8 6 1
t t u t 1
x(0) 0
u(t) is a unit step.
System Analysis Spring 2015
22 Example2. Find the state transition matrix using (sI-A)
-10 1 0
x( ) x( ) ( )
8 6 1
t t u t 1
x(0) 0
System Analysis Spring 2015
23