• Tidak ada hasil yang ditemukan

10-3 Linear Systems Analysis in the Time Domain III

N/A
N/A
Protected

Academic year: 2024

Membagikan "10-3 Linear Systems Analysis in the Time Domain III"

Copied!
23
0
0

Teks penuh

(1)

System Analysis Spring 2015

1

10-3

Linear Systems Analysis in the Time Domain III

- Transient Response -

(2)

System Analysis Spring 2015

2

System Response with Additional Poles

2 2

( )

( ) ( )

 

 

 

  

 

n d

n d

B s C

C s A

s s

2

1

,

2 n n

1

p p     j   

Underdamped System with additional pole at - α

( ) 1

2

cos( )

1



 

 

 

nt

step d

y t e t

(3)

System Analysis Spring 2015

3 3

▪ 목적

:

제어시스템을 설계할 때 극점이 과도응답에 미치는 영향을 알아본다

.

▪ 표준

2

차 계단응답에 대한 부가 극점의 효과를 고려

■ 극점 추가의 영향

2

( ) 1 , 0.5

( / 1)[ 2 1]

H s s s s 

 

  

  

(4)

System Analysis Spring 2015

4 4

■ 극점 추가의 영향

Simulation Result

2

( ) 1 , 0.5

( / 1)[ 2 1]

H s s s s 

 

  

  

(5)

System Analysis Spring 2015

5 5

■ 영점 추가의 영향 (2)

2

0 2 2

/ 1

( ) , 0.5, 1, 1

2 1

1 1

( ) ( ) ( )

2 1 2 1

d

H s s

s s

H s H s H s s

s s s s

  

  

    

 

   

   

(6)

System Analysis Spring 2015

6 6

■ 영점 추가의 영향 (2)

0.5, 1

      0.5,    1

Simulation Result

2 0 2 2

/ 1 1 1

( ) , ( ) , ( )

2 1 2 1

d

2 1

s s

H s H s H s

s s s s s s



   

   

     

(7)

System Analysis Spring 2015

7 7

■ 영점 추가의 영향 (1)

2

/ 1

( ) , 0.5

2 1

H s s

s  s

  

 

 

▪Simulation Result

(8)

System Analysis Spring 2015

8

Non-minimum Phase System

(9)

System Analysis Spring 2015

9

(10)

System Analysis Spring 2015

10

System Response with Zeros

(11)

System Analysis Spring 2015

11

Effects of Nonlinearities

Saturation Deadzone

(12)

System Analysis Spring 2015

12

Effects of Nonlinearities

Backlash

(13)

System Analysis Spring 2015

13

1

,

2

, ,

n

x x  x

system

1 2

m

u u u

1 2

l

y y y

1 2

( ) ( ) ( )

( ) ( ) ( )

( )

n T

x t Ax t Bu t y t Cx t Du t

x t x x x

 

 

Solution of Linear (Time Invariant) State Equation

(14)

System Analysis Spring 2015

14

Basic Matrix Linear Algebra -Homogeneous Solution

 

( 0)

0 0 0

2

A A

0 0

A

(0) ( ) (0)

( ) 0 i)

( ) 0,

( ) ( ), , ( )

( ) ( )

ii) exp( ) 1

1! 2! !

i) x = A x A : , x : 1

x( ) exp A( ) x( ), ( ) A

ii)

at

at

a t t

k at

t t

t

x C

x t x e

u t x ax

x t Ce t

x t e x t t t x t

at at at

e at

k

n n n

t t t t d e e

dt How to evaluate e

 

 

      

 

  

 

Scalar Function

Homogeneous Solution

(15)

System Analysis Spring 2015

15

 

   

0

0

A( ) 0

0 0

( )

0 0

2 1 1 0 2 0 0 1 2

2 A 2 A 2

1

x( ) x( )

( ) x( )

( ) exp A( )

1. ( ) ( ) ( ) , ,

2. (0)

3. ( ) ( ) ( ) (2 ) (2 )

( ) ( )

4. ( ) ( )

5. ( )

t t

A t t

t t

g

t e t

t t t

t t e t t

t t t t t t for any t t t

I

t t t t e e t

t gt

t t

t

  

    

      

 

        

  

   

: State transition matrix (STM)

: fundamental matrix of the system Properties of STM

is nonsingular for all finite values of t (inverse exists)

State Transition Matrix

(16)

System Analysis Spring 2015

16

 

0

( ) 0

0

x A x B , x A x B ,

x A x B , x B ( )

x( ) x(0) B ( )

x( ) x(0) B ( )

( ) x(0) ( ) B ( )

At

At At At At At

t

At A

t

At A t

t

u u

integrating factor e

e e e u d e e u t

dt

e t e u d

t e e u d

t t u d

 

 

  

    

 

   

 

    

  

  

    

 

Complete Solution of the State Equation

(17)

System Analysis Spring 2015

17

 

0

0

0

0 0

0 0

0

, , x( ) x( ) B ( )

x( ) ( ) x( ) ( ) B ( )

x( ) ( ) x(0) ( ) B ( )

t

At At A

t t

t t

for t t e t e t e u d

t t t t t u d

t t t u d

 

  

  

 

      

     

- Zero-input response

- free response

- Zero-state response

- forced response

0

, , 0

0

x( ) ( ) x(0) ( ) B ( )

t

change of variable let t t

t

d d

t t u d

    

 

 

  

    

  

 

     

Complete Solution of the State Equation

(18)

System Analysis Spring 2015

18

Laplace Transformation Solution of State Equations

 

x  Ax Bu y  Cx  Du

0

1 1

0

X( ) A X( ) B ( ) ,

X( ) ( I A)

( I A) B ( )

  

   

s s x s U s

s s x s U s

( I A)

X( ) [ (0) B ( )]

det( I A)

  

 adj s

s x U s

s

( )  X( )  ( ) Y s C s DU s

( ) X( )

( )  ( ) 

Y s s

C D

U s U s

( ) ( I A)

( ) det( I A) B

  

       Y s adj s

C D

U s s

( I A) det( I A) det( I A)

  

 

C adj s B D s

s

Laplace transformation 

Transfer function form 

System Poles  Roots of the denominator / Solution of det( I A) s   0

Eigenvalues of A matrix!!

(19)

System Analysis Spring 2015

19

Time Domain Solution of State Eqns. using Laplace Transform

x   A x B  u

1 1

0

A -1 1 -1

X( ) ( I A) ( I A) B ( )

( I A)

( I A) ( )

det( I A)

 

   

  

 

            

t

s s x s u s

adj s

e s t

L L s

A A( )

0 0

0

( ) B ( )

( ) (0) ( ) B ( )

 

  

 

    

t

t t

t

x t e x e u d

t x t u d

(20)

System Analysis Spring 2015

20

 

2 1

-1 1 -1 2 3

2 3 4

2 2 3 3

A 2 2 3 3

1 1 1

, , ( ) ( 1) ( )

( 1)!

1 1 1 1

( I A) I A A A

1 1

I A A A

2! 3!

1 1

I A A A

2! 3!

n

n n n

n n

t

t t t f t d F s

s n s ds

s s s s s

t t t

e t t t

   

          

 

 

           

   

     

L L L

L L

Using Laplace transformation table

(21)

System Analysis Spring 2015

21 Example1. Find the state transition matrix and solve for x(t).

0 1 0

x( ) x( ) ( )

8 6 1

   

           

 t t u t 1

x(0) 0

    

 

u(t) is a unit step.

(22)

System Analysis Spring 2015

22 Example2. Find the state transition matrix using (sI-A)

-1

0 1 0

x( ) x( ) ( )

8 6 1

   

           

 t t u t 1

x(0) 0

    

 

(23)

System Analysis Spring 2015

23

End of Lecture 10-3

Referensi

Dokumen terkait

6. Time deposits: money put in savings accounts usually stays there for a periotl time. Demand deposits: money put into a checking can be withclrawn or transferred from the

The purposes of the study are to find out the types of Cohesion are constructed in Obama’s speech text “Time Has Come to Reaffirm Our Enduring Spirit” which focused