Applications of the First Law
(Lecture 4)
1
stsemester, 2021
Advanced Thermodynamics (M2794.007900) Song, Han Ho
(*) Some materials in this lecture note are borrowed from the textbook of Ashley H. Carter.
Heat Capacity
è
Definition: the limiting ratio of the heat absorbed divided by the temperature increase
è
Specific heat capacity (or specific heat)
è
Specific heat at constant volume and at constant pressure derivative
not truly
lim
0÷ = ®
ø ç ö
è æ
= D
®
D
dT
Q T
C Q
T
d Applications of the First Law
K) (J/kmol 1
K) (J/kg 1
×
÷ = ø ç ö
è
= æ
×
÷ = ø ç ö
è
= æ
dT q dT
Q c n
dT q dT
Q c m
d d
d d
K) (J/kg
and
= ç æ ÷ ö ×
÷ ö ç æ
= q
q c
c d d
3
Heat Capacity
Applications of the First Law
Solid copper at 1 atm
Various ideal gases at 1 atm
1. Various ideal gases show different limit behaviors.
2. Argon has constant specific heats.
3. There is almost constant difference between cP and cv.
(à Mayer’s equation)
è
Some examples
Mayer’s Equation
è
Let’s find the relationship between c
vand c
Pfor an ideal gas.
For a simple compressible substance, the first law is
In general,
Then,
But for an ideal gas, (Gay-Lussac-Joule exp.)
Then,
Applications of the First Law
Pdv q
w q
du = d - d = d -
T dT dv u
v du u
T v u u
v T
÷ ø ç ö
è æ
¶ + ¶
÷ ø ç ö
è æ
¶
= ¶
®
= ( , )
ò
= -
=
÷ = ø ç ö
è æ
¶
= ¶
TT v
v v
v
du c dT u u c dT
dT du T
c u
0 0
or
or
0
only )
( ÷ =
ø ç ö
è æ
¶
® ¶
=
v
TT u
u
u
5
Mayer’s Equation
è
Continue on.
Using ideal gas EOS,
Substituting this equation,
Then,
Mayer’s equation
“Over the range of variables for which the ideal gas law holds, the two specific heat capacities differ by the constant R.”
è
The ratio of specific heat capacities (or specific heat ratio) Applications of the First Law
RdT vdP
Pdv RT
Pv = ® + =
R T c
c q
vP
P
÷ = +
ø ç ö
è æ º ¶ d
( c R ) dT vdP
q Pdv
dT c
q =
v+ ® d =
v+ -
d
v P
c
º c
g
Enthalpy and Heats of Transformation
è
The heat of transformation
l Heat transfer accompanying a phase change
l Phase change is an isothermal and isobaric process with changing volume.
l Applying the first law for a phase change, from phase 1 to phase 2,
Here, we define enthalpy(h), a state variable.
Then,
Applications of the First Law
( ) ( )
n) sublimatio fusion,
ion, vaporizat (i.e.
change phase
of heat latent
: where
)
( 2 1 2 2 1 1
1 2
l
Pv u
Pv u
l v
v P l u u
Pdv q
du
+ -
+
=
® -
-
= -
-
=
d
Pv u
h º +
P-v-T Surface for Water
7
Relationships involving Enthalpy
è
Let’s find some useful relationship using enthalpy for an ideal gas.
For S.C.S., the first law is
From the definition of enthalpy,
Then,
In general,
But for an ideal gas, (Joule-Thomson exp.)
Then,
Applications of the First Law
q Pdv
du Pdv
q
du = d - ® + = d
T dT dP h
P dh h
T P h h
P T
÷ ø ç ö
è æ
¶ + ¶
÷ ø ç ö
è æ
¶
= ¶
®
= ( , )
0
only )
( ÷ =
ø ç ö
è æ
¶
® ¶
=
P
TT h h h
vdP dh
Pdv du
vdP Pdv
du Pv
u d
dh = ( + ) = + + ® + = - vdP
dh q = - d
ò
= -
=
÷ = ø ç ö
è æ
¶
= ¶
TT P P
P
P
dh c dT h h c dT
dT dh T
c h
0 0
or or
Work done in an Adiabatic Process
è
Let’s calculate work done in an adiabatic process for an ideal gas.
For a simple compressible substance of an ideal gas, the first law is
Then,
Work is given by the following expression for a constant specific heats,
Applications of the First Law
dT c
vdP vdP
dT c
q
dT c Pdv
Pdv dT
c q
P P
v v
=
® -
=
-
=
® +
=
d
d ® = - = - g
v P
c c Pdv
vdP
K const
v Pv dv P
dP = - g or
g= =
(
1) [
12 11] [
2 2 1 1]
1 1 1
1 1
1
21 2
1
v P v
P Kv
Kv Kv
dv v
K Pdv
w
vv v
v
- -
= - -
- =
=
=
= ò ò
-gg
-gg
-g -gg