Applications of the Second Law
Chapter 7
Advanced Thermodynamics
Min Soo Kim
7.1 Entropy Changes in Reversible Processes
For reversible process,
๐น๐
๐= ๐ ๐ + ๐ท ๐ ๐
1. Adiabatic process :
๐น๐
๐= ๐, ๐ ๐ = ๐, ๐ = ๐๐๐๐๐๐๐๐
2. Isothermal process :
๐
๐โ ๐
๐= ืฌ
๐๐ ๐น๐๐๐ป
=
๐๐๐ป
3. Isothermal (and isobaric) change of phase :
๐
๐โ ๐
๐=
๐๐ป
4. Isochoric process :
๐
๐โ ๐
๐= ืฌ
๐๐๐
๐ ๐ ๐ป๐ป
= ๐
๐๐ฅ๐ง
๐ป๐๐ป๐
5. Isobaric process : ๐น๐๐
๐ป
=
๐ ๐๐ป
โ
๐๐ป
๐ ๐ท = ๐ ๐ ๐
๐โ ๐
๐= ืฌ
๐๐๐
๐ ๐ ๐ป๐ป
= ๐
๐๐ฅ๐ง
๐ป๐๐ป๐
7.1 Entropy Changes in Reversible Processes
7.2 Temperature-Entropy Diagrams
๐
๐= ืฌ
๐๐๐ป ๐ ๐
เถป ๐ป๐ ๐ = เท ๐
๐= ๐
[1]http://juanribon.com/design/carnot-cycle-pv-ts-diagram.php2017.02.27
Figure7.1 T-s diagram for a Carnot cycle [1]
The total quantity of heat transferred in a reversible process from state 1 to state 2 is given by
The T-s diagram is simple rectangle for a Carnot cycle. The area under the curve is
เถป ๐๐ข = 0 Since
surroundings ๐ + ๐๐
System ๐
๐๐๐ > 0
7.3 Entropy Change of the Surroundings (Reversible)
The heat flow out of the surroundings at every point is equal in magnitude and opposite in sign to the heat flow into the system.
๐๐
๐๐= ๐๐
๐๐ข๐ก= ๐๐
๐For a reversible process, temperature of system and its surroundings are eqaul
๐๐ โช ๐
surroundings ๐ + ๐๐
System ๐
๐๐๐ > 0
|๐ ๐|๐๐๐๐๐๐๐๐ ๐๐๐๐ = โ ๐ ๐ ๐๐๐๐๐๐ & ๐ ๐ ๐๐๐๐๐๐๐๐ = ๐
7.3 Entropy Change of the Surroundings (Reversible)
๐ ๐๐๐๐๐๐๐ + ๐ ๐๐๐๐๐๐๐๐๐ ๐๐๐๐ = ๐ ๐๐๐๐๐๐๐๐๐,
(
๐ป+๐ ๐ป๐น๐๐)
๐๐๐๐๐๐๐๐ ๐๐๐๐โ
๐น๐๐๐ป๐๐๐๐๐๐๐๐ ๐๐๐๐
= (๐น๐)
๐๐๐๐๐๐๐๐ ๐๐๐๐So,
and from
surroundings ๐ + ฮ๐
System ๐
๐๐๐ > 0
However for an irreversible case,
ฮ๐ > 0
7.3 Entropy Change of the Surroundings (Irreversible)
๐น๐๐
๐ป ๐๐๐๐๐๐๐๐ ๐๐๐๐
> (
๐ป+ฮ๐ป๐น๐๐)
๐๐๐๐๐๐๐๐ ๐๐๐๐= (ฮ๐)
๐๐๐๐๐๐๐๐ ๐๐๐๐and
7.3 Entropy Change of the Surroundings (Irreversible)
ฮ๐๐๐๐๐๐๐ + ฮ๐๐๐๐๐๐๐๐๐ ๐๐๐๐ = ฮ๐๐๐๐๐๐๐๐๐ > ๐ (Entropy generation!)
So,
surroundings ๐ + ฮ๐
System ๐
๐๐๐ > 0
7.4 Entropy change for an Ideal Gas
With ๐ ๐ = ๐๐๐ ๐ป, we have
๐ ๐
๐๐ป = ๐
๐๐ ๐ป
๐ป + ๐ท
๐ป ๐ ๐ = ๐ ๐
For a reversible process, For an ideal gas, P/T = R/๐ฃ , so
๐ ๐ = ๐
๐๐ ๐ป
๐ป + ๐น ๐ ๐ ๐
Integrating, we have
๐
๐โ ๐
๐= ๐
๐๐๐
(๐ป๐ป๐๐)
+ ๐น ๐๐
(๐๐๐๐)
7.5 The Tds Equations
From the combined first and second laws, ๐๐๐ฌ = ๐ ๐ + ๐ท ๐ ๐
๐ป๐ ๐ = ๐
๐๐ ๐ป โ ๐ป ( ๐๐
๐๐ป )
๐๐ ๐ท (๐ = ๐ ๐ป, ๐ท )
๐ป๐ ๐ = ๐
๐( ๐๐ป
๐๐ )
๐๐ ๐ + ๐
๐( ๐๐ป
๐๐ท )
๐๐ ๐ท (๐ = ๐ ๐, ๐ท ) ๐ป๐ ๐ = ๐
๐๐ ๐ป + ๐ป ( ๐๐ท
๐๐ป )
๐๐ ๐ (๐ = ๐ ๐ป, ๐ )
(โป Assignments) Entropy can be expressed as function of specific volume and pressure or temperature and specific volume. Prove the below two equations using Maxwell relations.
7.5 The Tds Equations
Let ๐ ๐๐๐ ๐ be the independent variables . The enthalpy is โ โก ๐ข + ๐ ๐ฃ thus,
๐ ๐ = ๐
๐ป ( ๐๐
๐๐ป )
๐ท๐ ๐ป + ๐
๐ป [( ๐๐
๐๐ท )
๐ปโ ๐]๐ ๐ท ๐ป๐ ๐ = ๐ ๐ โ ๐๐ ๐ท
= [( ๐๐
๐๐ป )
๐ท๐ ๐ป + ( ๐๐
๐๐ท )
๐ป๐ ๐ท] โ ๐๐ ๐ท
With ๐ = ๐ (๐, ๐), we have
๐ ๐ = ( ๐๐
๐๐ป )
๐ท๐ ๐ป + ( ๐๐
๐๐ท )
๐ป๐ ๐ท
Since ๐ ๐๐๐ ๐ are independent, it follows that
( ๐๐
๐๐ป )
๐ท= ๐
๐ป ( ๐๐
๐๐ป )
๐ท( ๐๐
๐๐ป )
๐ป= ๐
๐ป [( ๐๐
๐๐ท )
๐ปโ ๐]
๐๐๐ 7.5 The Tds Equations
๐ ๐ = ๐
๐ป ( ๐๐
๐๐ป )
๐ท๐ ๐ป + ๐
๐ป [( ๐๐
๐๐ท )
๐ปโ ๐]๐ ๐ท
The differential ๐๐ is exact. Therefore,
[ ๐
๐๐ท(๐๐
๐๐ป)๐ท]๐ป= ๐๐๐
๐๐ท๐๐ป = ๐๐๐
๐๐ป๐๐ท = [ ๐
๐๐ท(๐๐
๐๐ป)๐ป]๐ท
๐ ๐ป
๐๐๐
๐๐ท๐๐ป = ๐
๐ป[ ๐๐๐
๐๐ป๐๐ท โ (๐๐
๐๐ป)๐ท ] โ ๐
๐ป๐ [(๐๐
๐๐ท)๐ป โ ๐]
Substituting last two Equations from previous slide, we get
โ ( ๐๐
๐๐ท )
๐ป= โ๐ป ( ๐๐
๐๐ป )
๐ท+ ๐
7.5 The Tds Equations
For a reversible process ๐๐ = ๐โ
๐๐ ๐
๐ป๐ ๐ = ๐
๐ท๐ ๐ป โ ๐ป (
๐๐๐๐ท
)
๐ท๐ ๐ท
Finally, since ๐ฝ๐ฃ = ๐๐ฃ
๐๐ ๐ we have
๐ป๐ ๐ = ๐
๐ท๐ ๐ป โ ๐ป ๐๐ท๐ ๐ท