• Tidak ada hasil yang ditemukan

PDF Applications of the Second Law

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Applications of the Second Law"

Copied!
14
0
0

Teks penuh

(1)

Applications of the Second Law

Chapter 7

Advanced Thermodynamics

Min Soo Kim

(2)

7.1 Entropy Changes in Reversible Processes

For reversible process,

๐œน๐’’

๐’“

= ๐’…๐’– + ๐‘ท ๐’…๐’—

1. Adiabatic process :

๐œน๐’’

๐’“

= ๐ŸŽ, ๐’…๐’” = ๐ŸŽ, ๐’” = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•

2. Isothermal process :

๐’”

๐Ÿ

โˆ’ ๐’”

๐Ÿ

= ืฌ

๐Ÿ๐Ÿ ๐œน๐’’๐’“

๐‘ป

=

๐’’๐’“

๐‘ป

(3)

3. Isothermal (and isobaric) change of phase :

๐’”

๐Ÿ

โˆ’ ๐’”

๐Ÿ

=

๐’

๐‘ป

4. Isochoric process :

๐’”

๐Ÿ

โˆ’ ๐’”

๐Ÿ

= ืฌ

๐Ÿ๐Ÿ

๐’„

๐’— ๐’…๐‘ป

๐‘ป

= ๐’„

๐’—

๐ฅ๐ง

๐‘ป๐Ÿ

๐‘ป๐Ÿ

5. Isobaric process : ๐œน๐’’๐’“

๐‘ป

=

๐’…๐’‰

๐‘ป

โˆ’

๐’—

๐‘ป

๐’…๐‘ท = ๐’…๐’” ๐’”

๐Ÿ

โˆ’ ๐’”

๐Ÿ

= ืฌ

๐Ÿ๐Ÿ

๐’„

๐’‘ ๐’…๐‘ป

๐‘ป

= ๐’„

๐’‘

๐ฅ๐ง

๐‘ป๐Ÿ

๐‘ป๐Ÿ

7.1 Entropy Changes in Reversible Processes

(4)

7.2 Temperature-Entropy Diagrams

๐’’

๐’“

= ืฌ

๐Ÿ๐Ÿ

๐‘ป ๐’…๐’”

เถป ๐‘ป๐’…๐’” = เท ๐’’

๐’“

= ๐’˜

[1]http://juanribon.com/design/carnot-cycle-pv-ts-diagram.php2017.02.27

Figure7.1 T-s diagram for a Carnot cycle [1]

The total quantity of heat transferred in a reversible process from state 1 to state 2 is given by

The T-s diagram is simple rectangle for a Carnot cycle. The area under the curve is

เถป ๐‘‘๐‘ข = 0 Since

(5)

surroundings ๐‘‡ + ๐‘‘๐‘‡

System ๐‘‡

๐‘‘๐‘ž๐‘Ÿ > 0

7.3 Entropy Change of the Surroundings (Reversible)

The heat flow out of the surroundings at every point is equal in magnitude and opposite in sign to the heat flow into the system.

๐‘‘๐‘ž

๐‘–๐‘›

= ๐‘‘๐‘ž

๐‘œ๐‘ข๐‘ก

= ๐‘‘๐‘ž

๐‘Ÿ

For a reversible process, temperature of system and its surroundings are eqaul

๐‘‘๐‘‡ โ‰ช ๐‘‡

(6)

surroundings ๐‘‡ + ๐‘‘๐‘‡

System ๐‘‡

๐‘‘๐‘ž๐‘Ÿ > 0

|๐’…๐’”|๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’” = โˆ’ ๐’…๐’” ๐’”๐’š๐’”๐’•๐’†๐’Ž & ๐’…๐’” ๐’–๐’๐’Š๐’—๐’†๐’“๐’”๐’† = ๐ŸŽ

7.3 Entropy Change of the Surroundings (Reversible)

๐’…๐’”๐’”๐’š๐’”๐’•๐’†๐’Ž + ๐’…๐’”๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’” = ๐’…๐’”๐’–๐’๐’Š๐’—๐’†๐’“๐’”๐’†,

(

๐‘ป+๐’…๐‘ป๐œน๐’’๐’“

)

๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’”

โ‰ˆ

๐œน๐’’๐’“๐‘ป

๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’”

= (๐œน๐’”)

๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’”

So,

and from

(7)

surroundings ๐‘‡ + ฮ”๐‘‡

System ๐‘‡

๐‘‘๐‘ž๐‘Ÿ > 0

However for an irreversible case,

ฮ”๐‘‡ > 0

7.3 Entropy Change of the Surroundings (Irreversible)

๐œน๐’’๐’“

๐‘ป ๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’”

> (

๐‘ป+ฮ”๐‘ป๐œน๐’’๐’“

)

๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’”

= (ฮ”๐’”)

๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’”

and

(8)

7.3 Entropy Change of the Surroundings (Irreversible)

ฮ”๐’”๐’”๐’š๐’”๐’•๐’†๐’Ž + ฮ”๐’”๐’”๐’–๐’“๐’“๐’๐’–๐’๐’…๐’Š๐’๐’ˆ๐’” = ฮ”๐’”๐’–๐’๐’Š๐’—๐’†๐’“๐’”๐’† > ๐ŸŽ (Entropy generation!)

So,

surroundings ๐‘‡ + ฮ”๐‘‡

System ๐‘‡

๐‘‘๐‘ž๐‘Ÿ > 0

(9)

7.4 Entropy change for an Ideal Gas

With ๐’…๐’– = ๐’„๐’—๐’…๐‘ป, we have

๐’…๐’’

๐’“

๐‘ป = ๐’„

๐’—

๐’…๐‘ป

๐‘ป + ๐‘ท

๐‘ป ๐’…๐’— = ๐’…๐’”

For a reversible process, For an ideal gas, P/T = R/๐‘ฃ , so

๐’…๐’” = ๐’„

๐’—

๐’…๐‘ป

๐‘ป + ๐‘น ๐’…๐’— ๐’—

Integrating, we have

๐’”

๐Ÿ

โˆ’ ๐’”

๐Ÿ

= ๐’„

๐’—

๐’๐’

(๐‘ป๐‘ป๐Ÿ

๐Ÿ)

+ ๐‘น ๐’๐’

(๐’—๐’—๐Ÿ

๐Ÿ)

(10)

7.5 The Tds Equations

From the combined first and second laws, ๐“๐๐ฌ = ๐’…๐’– + ๐‘ท ๐’…๐’—

๐‘ป๐’…๐’” = ๐’„

๐’‘

๐’…๐‘ป โˆ’ ๐‘ป ( ๐๐’—

๐๐‘ป )

๐’‘

๐’…๐‘ท (๐’” = ๐’” ๐‘ป, ๐‘ท )

๐‘ป๐’…๐’” = ๐’„

๐’‘

( ๐๐‘ป

๐๐’— )

๐’‘

๐’…๐’— + ๐’„

๐’—

( ๐๐‘ป

๐๐‘ท )

๐’—

๐’…๐‘ท (๐’” = ๐’” ๐’—, ๐‘ท ) ๐‘ป๐’…๐’” = ๐’„

๐’—

๐’…๐‘ป + ๐‘ป ( ๐๐‘ท

๐๐‘ป )

๐’—

๐’…๐’— (๐’” = ๐’” ๐‘ป, ๐’— )

(โ€ป Assignments) Entropy can be expressed as function of specific volume and pressure or temperature and specific volume. Prove the below two equations using Maxwell relations.

(11)

7.5 The Tds Equations

Let ๐‘‡ ๐‘Ž๐‘›๐‘‘ ๐‘ƒ be the independent variables . The enthalpy is โ„Ž โ‰ก ๐‘ข + ๐‘ƒ ๐‘ฃ thus,

๐’…๐’” = ๐Ÿ

๐‘ป ( ๐๐’‰

๐๐‘ป )

๐‘ท

๐’…๐‘ป + ๐Ÿ

๐‘ป [( ๐๐’‰

๐๐‘ท )

๐‘ป

โˆ’ ๐’—]๐’…๐‘ท ๐‘ป๐’…๐’” = ๐’…๐’‰ โˆ’ ๐’—๐’…๐‘ท

= [( ๐๐’‰

๐๐‘ป )

๐‘ท

๐’…๐‘ป + ( ๐๐’‰

๐๐‘ท )

๐‘ป

๐’…๐‘ท] โˆ’ ๐’—๐’…๐‘ท

(12)

With ๐‘  = ๐‘ (๐‘‡, ๐‘ƒ), we have

๐’…๐’” = ( ๐๐’”

๐๐‘ป )

๐‘ท

๐’…๐‘ป + ( ๐๐’”

๐๐‘ท )

๐‘ป

๐’…๐‘ท

Since ๐‘‡ ๐‘Ž๐‘›๐‘‘ ๐‘ƒ are independent, it follows that

( ๐๐’”

๐๐‘ป )

๐‘ท

= ๐Ÿ

๐‘ป ( ๐๐’‰

๐๐‘ป )

๐‘ท

( ๐๐’”

๐๐‘ป )

๐‘ป

= ๐Ÿ

๐‘ป [( ๐๐’‰

๐๐‘ท )

๐‘ป

โˆ’ ๐’—]

๐‘Ž๐‘›๐‘‘ 7.5 The Tds Equations

๐’…๐’” = ๐Ÿ

๐‘ป ( ๐๐’‰

๐๐‘ป )

๐‘ท

๐’…๐‘ป + ๐Ÿ

๐‘ป [( ๐๐’‰

๐๐‘ท )

๐‘ป

โˆ’ ๐’—]๐’…๐‘ท

(13)

The differential ๐‘‘๐‘  is exact. Therefore,

[ ๐

๐๐‘ท(๐๐’”

๐๐‘ป)๐‘ท]๐‘ป= ๐๐Ÿ๐’”

๐๐‘ท๐๐‘ป = ๐๐Ÿ๐’”

๐๐‘ป๐๐‘ท = [ ๐

๐๐‘ท(๐๐’”

๐๐‘ป)๐‘ป]๐‘ท

๐Ÿ ๐‘ป

๐๐Ÿ๐’‰

๐๐‘ท๐๐‘ป = ๐Ÿ

๐‘ป[ ๐๐Ÿ๐’‰

๐๐‘ป๐๐‘ท โˆ’ (๐๐’—

๐๐‘ป)๐‘ท ] โˆ’ ๐Ÿ

๐‘ป๐Ÿ [(๐๐’‰

๐๐‘ท)๐‘ป โˆ’ ๐’—]

Substituting last two Equations from previous slide, we get

โ†” ( ๐๐’‰

๐๐‘ท )

๐‘ป

= โˆ’๐‘ป ( ๐๐’—

๐๐‘ป )

๐‘ท

+ ๐’—

7.5 The Tds Equations

(14)

For a reversible process ๐‘๐‘ƒ = ๐œ•โ„Ž

๐œ•๐‘‡ ๐‘ƒ

๐‘ป๐’…๐’” = ๐’„

๐‘ท

๐’…๐‘ป โˆ’ ๐‘ป (

๐๐’—

๐๐‘ท

)

๐‘ท

๐’…๐‘ท

Finally, since ๐›ฝ๐‘ฃ = ๐œ•๐‘ฃ

๐œ•๐‘‡ ๐‘ƒ we have

๐‘ป๐’…๐’” = ๐’„

๐‘ท

๐’…๐‘ป โˆ’ ๐‘ป ๐’—๐œท๐’…๐‘ท

7.5 The Tds Equations

Referensi

Dokumen terkait

According to the theory of PPP Purchasing Power Parity that the magnitude of the price level is equal to the magnitude of the foreign price level P * which is converted into the

LEARNER 4: because the square has all the properties of the rectangle like: opposite sides equal; opposite sides parallel; each angle is 90 degrees; diagonals bisect each other;

๐‘ž = ๐‘šฬ‡๐ถ๐‘โˆ†๐‘‡ 1 Where, ๐‘ž is the cooling effect kW, ๐‘šฬ‡ is mass flow rate of water kg/s, ๐ถ๐‘ is specific heat of water kJ/kg ๏‚ฐC, and โˆ†๐‘‡ is temperature difference of water when entering and

โ€ข Gibbs-Helmholtz equation ๐บ = ๐ป + ๐‘‡๐œ•๐บ ๐œ•๐‘‡๐‘ƒ 10.2 โ€ข If this relation is applied to the initial and final states of a system undergoing an isothermal process, it takes the form โˆ†๐บ = โˆ†๐ป

5.7 The Thermodynamic Temperature Scale รจ From the equality of the efficiencies of Carnot cycles, Here, the efficiency of the heat engine using a Carnot cycle is given as, รจ Define

Where Q: heat J M: mass of substance Kg โˆ†T: change in temperature K or ยฐC which is equal to ๐‘‡๐‘“ โˆ’ ๐‘‡๐‘–, final temperature minus initial temperature c: specific heat [J/kg.K or

Heat budget without greenhouse effect The surface of a planet reaches an equilibrium state at a temperature where the terrestrial radiation F is equal to the net solar radiation S...

Enthalpy and Heats of Transformation รจ The heat of transformation l Heat transfer accompanying a phase change l Phase change is an isothermal and isobaric process with changing