• Tidak ada hasil yang ditemukan

Optimal Design of Energy Systems

N/A
N/A
Protected

Academic year: 2024

Membagikan "Optimal Design of Energy Systems"

Copied!
15
0
0

Teks penuh

(1)

Optimal Design of Energy Systems

Chapter 8 Lagrange Multipliers

Min Soo KIM

Department of Mechanical and Aerospace Engineering

Seoul National University

(2)

8.1 Calculus methods of optimization Function – differentiable

Constraints - equality

Chapter 8. Lagrange Multipliers

(3)

8.2 Lagrange Multiplier equations optimize

subject to

→ optimum occurs at x values

Chapter 8. Lagrange Multipliers

1 2

( , , , n ) yy x xx

1 1 1 2

1 2

( , , , ) 0

( , , , ) 0

n

m m n

x x x

x x x

 

 

 

 

1 1 m m 0

y

   

       

constants : Lagrange multipliers

1 2

1 2

ˆ ˆ ˆ

n n

y y y

y i i i

x x x

  

    

   

unit vectors Gradient vector : normal to y=const. surface

(4)

8.2 Lagrange Multiplier equations

Chapter 8. Lagrange Multipliers

* *

1 m , x1 xn

at optimum point

1

1 1

1 1 1

ˆ : y m m 0

i x x x

 

    

   

1

ˆ :n 1 m m 0

n n n

i y

x x x

 

    

   

n scalar equations

m constraints equations

unknowns

m

n

mn mn

if fixed values of x’s (no optimization)

(5)

8.5 Unconstrained optimization

Chapter 8. Lagrange Multipliers

1 2

( , , , n ) yy x xx

0

 y

1 2

0

n

y y y

x x x

      

   

ex) minimize (optimize)

y x2

2 0

y x

x

  

2 2

1 2

yxx

1 1

2 2

2 0

2 0

y x

x

y x

x

  

  

x1

x2

y

(6)

8.6 Constrained optimization

Chapter 8. Lagrange Multipliers

x1

x2

y

ex)

minimize

constraint .:

Lagrange multiplier

2 2

1 2

yxx

1 2 1

xx

1 2 1 1 2 2

1 2

ˆ ˆ 2 ˆ 2 ˆ

y y

y i i x i x i

x x

 

    

 

1 2 1 0

x x

   

1 2 1 2

1 2

ˆ ˆ ˆ ˆ

i i i i

x x

 

    

 

1 ˆ1 2 ˆ2

( 2 ) ( 2 ) 0

y

 

x

i x

i

       

1 2

2 0

2 0

x x

 

 

1 2

1 2 m in

/ 2, / 2

0 .5, 0 .5 0 .5

x x

x x y

 

 

   

x1

x2

+

x1

x2

y

(7)

8.6 Constrained optimization

<Example 8.3> A total length of 100 m of tubes must be installed in a shell- and-tube heat exchanger, in order to provide the necessary heat- transfer area.

Total cost of the installation in dollars includes

1. The cost of the tubes, which is constant at $ 900 2. The cost of the shell =1100D2.5L

3. The cost of the floor space occupied by the heat exchanger=320 DL

Chapter 8. Lagrange Multipliers

where L is the length of the heat exchanger and D is the diameter of the shell, both in meters.

The spacing of the tubes in such that 200 tubes will fit in a cross-sectional area of 1 m2 in the shell. Determine the diameter and length of the heat exchanger for minimum first cost.

(8)

8.6 Constrained optimization

<Solution>

minimize subject to

Chapter 8. Lagrange Multipliers

9 0 0 1 1 0 0 2 .5 3 2 0

y   D LD L

2

2 2

2

( ) ( ) 2 0 0 ( / ) 1 0 0 ( )

4

5 0 1 0 0

D m L m tu b es m m

D L

  

 

y

 

   ˆ1

: D i

ˆ2

: L i

( 2 7 5 0D1 .5L  3 2 0 )L

(1 0 0

D L)  0

2 .5 2

(1 1 0 0D  3 2 0D) 

(5 0

D )  0

2 7 5 0 1 .5 3 2 0 1 0 0

D

D

* *

0.7 , 1.3 , 8.78

Dm Lm

* 2.5

900 (1100)(0.7) (1.3) (320)(0.7)(1.3) $1777.45

y    

(9)

8.7 Gradient vector

- gradient vector is normal to contour line

Chapter 8. Lagrange Multipliers

x2

x1

y y3

y y2

y y1

d x1

d x2

1 2

( , )

y y x x

1 2

1 2

y y

d y d x d x

x x

0

d y 1 2 2

1

/ /

y x

d x d x

y x

 

   

substitution into arbitrary unit vector

1 2

2 2

1 2

ˆ ˆ

( ) ( )

d x i d x j

d x d x

Along the line of y const.

(10)

8.7 Gradient vector

Chapter 8. Lagrange Multipliers

Tangent vector

Gradient vector

2

1 2 1 2 1

2 2 2 2 2

1 2 2

1 1 2

/ ˆ ˆ ˆ ˆ

ˆ ˆ /

( ) ( ) /

/ 1

y x y y

i j i j

d x i d x j y x x x

T

d x d x y x y y

y x x x

   

   

    

  

            

2 1

2 2

1 2

ˆ ˆ

y y

i j

x x

G

y y

x x

  

 

      

     

   

T  G  0

(11)

8.9 Test for maximum or minimum

- decide whether the point is a maximum, minimum, saddle point, ridge, or valley

Chapter 8. Lagrange Multipliers

saddle point ridge & valley point

ridge

valley

(12)

8.9 Test for maximum or minimum

• expected minimum occurs at

Chapter 8. Lagrange Multipliers

( ) yy x

2

2 2

( ) ( ) ( ) 1 ( )

2

d y d y

y x y a x a x a

d x d x

      Taylor series expansion near xa

when

d y

d x should be zero

2

2 0

d y d x

If y x( 1) y a( ) when x1 a ( 2) ( )

y xy a x2a minimum

2

2 0

d y d x

If y x( 1)  y a( ) x1a maximum

( 2) ( )

y xy a x2a

a

d y 0 d x

If y x( ) y a( ) x a

( ) ( )

y xy a when xa

is still considered minimum ( )

y a

is not minimum ( )

y a

when when when

x1

x2

a x1

x2

xa

(13)

8.9 Test for maximum or minimum

• expected minimum or maximum occurs at

Chapter 8. Lagrange Multipliers

1 2

( , )

yy x x

1 2 1 2 1 1 2 2

1 2

2 2

1 1 1 1 1 2 1 1 2 2 2 2 2 2

( , ) ( , ) ( ) ( )

1 1

( ) ( )( ) ( )

2 2

y y

y x x y a a x a x a

x x

y x a y x a x a y x a

 

    

 

  

       

min

1 1 1 2

2 1 2 2

2

1 1 2 2 1 2

y y

D y y

y y y

 

 

  

0

Dy1 1  0 (y2 2  0 )

0

Dmax

1 2

(a ,a )

and

and

0

Dnot min or max

1 1 0 ( 2 2 0 )

y  y 

(14)

8.9 Test for maximum or minimum

<Example 8.4> optimal value x

1

and x

2

& maximum or minimum ?

Chapter 8. Lagrange Multipliers

2 1

2 1 2

2 4

4

y x x

  x x 

<Solution>

1

2

1 1 2

2 2

x y

x x x

  

2 1 22

2 4

y

x x x

   

and

1* 2*

1

2, 2

x  x 

2 2 2

2 2

1 2 1 2

3 1 6 2

2

y y y

x x x x

     

   

1 1

3 / 2 2

0 0

2 1 6

D   y   

minimum
(15)

8.10 Sensitivity coefficient

- represents the effect on the optimal value of slightly relaxing the constraints

- variation of optimized objective function

Chapter 8. Lagrange Multipliers

(

*

)

8 .7 8 C o st

S C   H   

y

*

In example 8.3, if the total length of the tube increases from 100m to random value ‘H’, what would be the increase in minimum cost ?

* 2 .5

9 0 0 1 1 0 0 3 2 0 9 0 0 8 .7 8

C o st   D LD L   H

2 2

5 0

D L  1 0 0  5 0

D LH

Extra meter of tube for the heat exchanger would cost additional $8.78

Referensi

Dokumen terkait

Langkah – langkah Perancangan Shell and Tube Heat Exchanger Sebelum mendesain alat penukar kalor, dibutuhkan data dari laju aliran, temperature masuk dan temperature

A two-fluid heat exchanger is considered to be stream symmetric if the exchanger effectiveness &#34; (or P ) remains invariant by switching the two fluids (such as the tube fluid to

Evaluasi desain kondensor dilakukan pada PLTN tipe PWR dengan data teknis yang terdapat pada Tabel 2. Software shell and tube heat exchanger design merupakan program yang..

The heat energy collected is then be used for applications such as a hot water shower by transferring the heat to a water tank using a closed loop fluid flow circuit and a heat

Barve, Effect of Different types of Baffles on Heat Transfer & Pressure Drop of Shell and Tube Heat Exchanger: A review, International Journal of Current Engineering and Technology,

"Pipe Blockage Prediction of Shell and Tube Heat Exchanger under Linear and Cross Flow Operation", Materials Today: Proceedings, 2019 Publication edoc.pub Internet Source

12.17 Simplex algorithm to minimization problem Determine the minimum value of y and the magnitudes of x1 and x2 at this minimum, where Subject to the constraints Chapter 12...

Optimal Design of Energy Systems Chapter 4 Equation Fitting Min Soo KIM Department of Mechanical and Aerospace Engineering Seoul National University... Equation Development •